@ab_aswini/agent-kit-p1
v2.0.1
Published
Multi-agent AI framework for local-first software development.
Maintainers
Readme
🏭 Agent-Kit
The AI Software Company That Lives Inside Your IDE
You are not a solo developer anymore. You are a CTO with 53 autonomous AI employees.
┌─────────────────────────────────────────────────────┐
│ │
│ npx @ab_aswini/agent-kit-p1 init │
│ │
│ ↳ That's it. Your AI company is now deployed. │
│ │
└─────────────────────────────────────────────────────┘📋 Table of Contents
| # | Section | What You'll Learn | |:-:|:--------|:------------------| | 1 | 🧩 What Is Agent-Kit? | The big picture — why this exists | | 2 | 💡 The Problem We Solve | The pain point and how we fix it | | 3 | 🏗️ How It Works — Architecture | The governance model, layers, and control flow | | 4 | 👥 Meet Your Team — 53 Agents | Every department, every agent, every role | | 5 | 🎨 UI&UX Intelligence Engine | The built-in design brain with 18 domains & 16 stacks | | 6 | 🚦 The Iron Well Protocol | How governance actually works step-by-step | | 7 | ⚡ Install & Setup | Every way to install + first steps | | 8 | 🎯 Company Archetypes | Choose your team size from 14 to 53 agents | | 9 | ⚙️ Tech Stack | What's under the hood | | 10 | 🛡️ Security & Privacy | How safety is enforced at every layer | | 11 | 🚢 Deployment Pipeline | From your IDE to NPM to the end user | | 12 | 🗺️ Roadmap | What's coming next | | 13 | 🤝 Contributing | How to add agents, skills, or datasets | | 14 | 📄 License | MIT — fully open |
🧩 What Is Agent-Kit?
Agent-Kit is an NPM package that turns any project directory into an AI-powered software company.
When you run npx @ab_aswini/agent-kit-p1 init, it scaffolds a hidden .agent-os directory inside your project. That directory contains:
your-project/
├── .agent-os/ ← The AI Operating System
│ ├── agents/ ← 53 AI agent definitions (.md files)
│ │ ├── tier-1/ ← Executive council (CTS, SFS, SP, RC)
│ │ ├── engineering/ ← Backend, Frontend, Database, Mobile, Game
│ │ ├── qa/ ← Testing, coverage, regression
│ │ ├── security/ ← Threat modeling, pen testing
│ │ ├── product/ ← PRDs, UX research, README architect
│ │ ├── devops/ ← CI/CD, Docker, monitoring
│ │ ├── intelligence/ ← Legacy archaeology, research
│ │ ├── marketing-growth/ ← SEO/GEO, brand authority
│ │ └── meta/ ← Memory, loops, permissions
│ │
│ ├── skills/ ← 42+ reusable skill modules
│ │ ├── clean-code/ ← Code quality standards
│ │ ├── api-patterns/ ← REST/GraphQL conventions
│ │ ├── database-design/ ← Schema, migration patterns
│ │ ├── security/ ← OWASP, shift-left practices
│ │ ├── frontend-design/ ← Component architecture
│ │ ├── testing-patterns/ ← TDD, pyramid, coverage
│ │ └── ... 36 more
│ │
│ ├── .shared/
│ │ └── UI&UX/ ← Design intelligence engine
│ │ ├── data/ ← 18 domain CSVs (styles, colors, etc.)
│ │ │ └── stacks/ ← 16 framework-specific CSVs
│ │ └── scripts/ ← BM25 search engine + design generator
│ │
│ ├── workflows/ ← 19 pre-built SOPs (create, debug, deploy...)
│ ├── rules/ ← Universal rules, Socratic Gate, GEMINI config
│ ├── templates/ ← 12 company archetype configurations
│ ├── hub-logic.md ← Central intelligence hub
│ └── manifest.json ← Master registry of all 53 agents
│
├── scripts/ ← Automation scripts
│ ├── checklist.py ← 360° project health audit
│ ├── spawn_agent.py ← Generate system prompts for any agent
│ ├── security_chaos_test.py ← Simulated attack testing
│ └── sync_api_contracts.py ← Backend-frontend contract alignment
│
├── memory/ ← Persistent context across sessions
│ ├── global/ ← Architecture, decisions, conventions
│ ├── backend/ ← Backend-specific context
│ ├── frontend/ ← Frontend-specific context
│ └── product/ ← Product-specific context
│
└── bin/cli.js ← CLI entry pointEvery .md file is an agent definition — a detailed protocol document that tells your AI IDE (Cursor, VS Code, Windsurf, or any AI editor) exactly how to behave for a specific role. When you tell your AI assistant to "read the backend specialist agent," it loads that agent's rules, boundaries, skills, and decision frameworks.
[!IMPORTANT] Agent-Kit does not run its own AI models. It augments your existing AI IDE by giving it structured roles, governance protocols, and domain-specific intelligence. Think of it as the operating system, and your AI (GPT, Claude, Gemini) as the hardware.
💡 The Problem We Solve
Building production software requires coordinated expertise across many domains:
%%{init: {'theme': 'default'}}%%
flowchart LR
subgraph NEED["What Production Software Needs"]
direction TB
A["🏗️ Architecture"]
B["🔧 Backend APIs"]
C["🎨 Frontend UI"]
D["🗄️ Database Design"]
E["🧪 Testing & QA"]
F["🛡️ Security Audit"]
G["🎯 Product Strategy"]
H["🚀 DevOps & CI/CD"]
I["📱 Mobile Development"]
J["📢 SEO & Marketing"]
end
subgraph WITHOUT["Without Agent-Kit"]
direction TB
X["😰 One dev doing everything"]
Y["💸 Hire 10+ specialists"]
Z["🐛 Gaps in coverage"]
end
subgraph WITH["With Agent-Kit"]
direction TB
W["🏭 53 AI specialists"]
V["🛡️ Governed by Iron Well"]
U["⚡ Zero hiring cost"]
end
NEED --> WITHOUT
NEED --> WITH
style X fill:#EF4444,stroke:#DC2626,color:#fff,stroke-width:2px
style Y fill:#EF4444,stroke:#DC2626,color:#fff,stroke-width:2px
style Z fill:#EF4444,stroke:#DC2626,color:#fff,stroke-width:2px
style W fill:#10B981,stroke:#047857,color:#fff,stroke-width:2px
style V fill:#10B981,stroke:#047857,color:#fff,stroke-width:2px
style U fill:#10B981,stroke:#047857,color:#fff,stroke-width:2pxThe typical solo developer writes code, tests improperly, skips security audits, struggles with UX, and deploys with crossed fingers.
Agent-Kit gives you a full company:
| Role | Agent | What It Actually Does | |:-----|:------|:----------------------| | CTO | CTS-001 | Reviews every decision, enforces architecture, has merge authority | | Lead Developer | SFS-001 | Orchestrates multi-file tasks, routes work to specialists | | Strategist | SP-001 | Creates milestone plans before any code is written | | Risk Officer | RC-001 | Flags compliance issues, evaluates trade-offs | | 10 Backend Devs | BE-001→010 | API design, auth, microservices, caching, queues | | 8 Frontend Devs | FE-001→008 | Components, state management, animations, a11y | | 5 DB Engineers | DB-001→005 | Schema design, migrations, query optimization | | 6 QA Engineers | QA-001→006 | Unit tests, integration, E2E, regression | | Security Specialist | SEC-001 | OWASP compliance, vulnerability scanning | | 6 DevOps Engineers | DO-001→006 | Docker, CI/CD, monitoring, deployment | | Product Manager | PM-001 | PRDs, user stories, acceptance criteria | | UX Researcher | PM-002 | Usability analysis, design patterns | | README Architect | RA-001 | Documentation generation (that's me!) | | SEO Specialist | MKT-001 | Search optimization, metadata strategy | | Intel Agent | INTEL-001 | Legacy code analysis, deep research | | 4 Meta Agents | MM-001→004 | Memory management, loop detection, permissions |
🏗️ How It Works — Architecture
The Governance Model
Agent-Kit uses a military-style chain of command called the Iron Well Protocol. No agent can go rogue — every action flows through approval gates.
%%{init: {'theme': 'default'}}%%
graph TD
subgraph HUMAN["🧑💻 YOU — THE OWNER"]
H(("👤 Developer<br/>(Final Authority)"))
end
subgraph EXECUTIVE["🏛️ TIER 1 — EXECUTIVE COUNCIL"]
SFS["🎯 SFS-001<br/>Senior Full Stack<br/>━━━━━━━━━━━━━<br/>Orchestrates all work"]
CTS["👑 CTS-001<br/>Chief Supervisor<br/>━━━━━━━━━━━━━<br/>Merge authority"]
SP["📋 SP-001<br/>Strategy Planner<br/>━━━━━━━━━━━━━<br/>Milestone planning"]
RC["⚖️ RC-001<br/>Risk & Compliance<br/>━━━━━━━━━━━━━<br/>Risk assessment"]
end
subgraph DEPARTMENTS["⚡ TIER 2 — 9 SPECIALIZED DEPARTMENTS"]
direction LR
ENG["🔧 Engineering<br/>25 agents"]
QA["🧪 QA<br/>6 agents"]
SEC["🛡️ Security<br/>1 agent"]
PROD["📦 Product<br/>5 agents"]
DX["🚀 DevOps<br/>6 agents"]
INTEL["🔍 Intel<br/>1 agent"]
MKT["📢 Marketing<br/>1 agent"]
end
subgraph META["🧠 TIER 3 — META-MANAGEMENT"]
MM["🧠 Memory + Loops + Permissions<br/>4 agents that keep the system sane"]
end
subgraph INTELLIGENCE["🎨 SHARED INTELLIGENCE LAYER"]
UX["🎨 UI&UX Engine<br/>18 domains · 16 stacks<br/>BM25 search · Design generator"]
end
H -->|"📝 You give a task"| SFS
SFS -->|"🚦 Socratic Gate:<br/>3 strategic questions"| H
H -->|"✅ You answer"| SFS
SFS -->|"📋 Creates plan"| SP
SP -->|"📄 milestones.md"| SFS
SFS -->|"📤 Delegates to specialists"| DEPARTMENTS
DEPARTMENTS -->|"🧪 Submit for review"| QA
QA -->|"✔️ Approval"| CTS
CTS -->|"🚀 Final delivery"| H
META -.->|"🔗 Context sync"| DEPARTMENTS
INTELLIGENCE -.->|"🎨 Design data"| DEPARTMENTS
style H fill:#10B981,stroke:#047857,stroke-width:3px,color:#fff
style SFS fill:#7C3AED,stroke:#5B21B6,stroke-width:2px,color:#fff
style CTS fill:#7C3AED,stroke:#5B21B6,stroke-width:2px,color:#fff
style SP fill:#8B5CF6,stroke:#6D28D9,stroke-width:2px,color:#fff
style RC fill:#8B5CF6,stroke:#6D28D9,stroke-width:2px,color:#fff
style ENG fill:#2563EB,stroke:#1D4ED8,stroke-width:2px,color:#fff
style QA fill:#06B6D4,stroke:#0891B2,stroke-width:2px,color:#fff
style SEC fill:#EF4444,stroke:#DC2626,stroke-width:2px,color:#fff
style PROD fill:#F59E0B,stroke:#D97706,stroke-width:2px,color:#000
style DX fill:#EC4899,stroke:#DB2777,stroke-width:2px,color:#fff
style INTEL fill:#14B8A6,stroke:#0D9488,stroke-width:2px,color:#fff
style MKT fill:#F97316,stroke:#EA580C,stroke-width:2px,color:#fff
style MM fill:#6366F1,stroke:#4F46E5,stroke-width:2px,color:#fff
style UX fill:#F59E0B,stroke:#D97706,stroke-width:3px,color:#000The Four Layers
Every component in Agent-Kit lives in one of four layers:
%%{init: {'theme': 'default'}}%%
graph TD
subgraph L4["🖥️ LAYER 4 — INTERFACE (How You Interact)"]
CLI["⌨️ CLI Commands<br/>init · doctor · interactive"]
IDE["💻 AI IDE<br/>Cursor · VS Code · Windsurf"]
NPX["📦 NPX/NPM<br/>One-command install"]
end
subgraph L3["🎛️ LAYER 3 — ORCHESTRATION (How Agents Coordinate)"]
GATE["🚦 Socratic Gate<br/>Must answer 3 questions<br/>before any complex task"]
PHASE["⚡ 2-Phase Engine<br/>Phase 1: Plan only<br/>Phase 2: Execute only"]
GOV["👑 Tiered Authority<br/>Owner → Exec → Dept → Meta<br/>No tier can exceed its level"]
WF["📋 19 Workflows<br/>create · debug · deploy<br/>test · plan · enhance · more"]
end
subgraph L2["🧠 LAYER 2 — INTELLIGENCE (How Agents Think)"]
BM25["🔍 BM25 Search<br/>Full-text search over<br/>34 CSV knowledge bases"]
DSG["🎨 Design System Gen<br/>Auto-generates colors,<br/>typography, patterns"]
REASON["💡 Reasoning Engine<br/>47K+ data points for<br/>UI/UX decision-making"]
SPAWN["🤖 Agent Spawner<br/>Generate system prompts<br/>for any of 53 agents"]
end
subgraph L1["💾 LAYER 1 — DATA (What Agents Know)"]
AGENTS["📄 53 Agent Protocols<br/>Identity, rules, boundaries,<br/>skills, anti-patterns"]
SKILLS["🧩 42+ Skill Modules<br/>Reusable expertise:<br/>clean-code, auth, TDD, etc."]
CSV["📊 34 CSV Datasets<br/>Design knowledge:<br/>18 domains + 16 frameworks"]
MEM["🧠 Memory Hubs<br/>Persistent context:<br/>architecture, decisions, risks"]
end
L4 --> L3
L3 --> L2
L2 --> L1
style CLI fill:#7C3AED,stroke:#5B21B6,stroke-width:2px,color:#fff
style IDE fill:#8B5CF6,stroke:#6D28D9,stroke-width:2px,color:#fff
style NPX fill:#A78BFA,stroke:#7C3AED,stroke-width:2px,color:#fff
style GATE fill:#EF4444,stroke:#DC2626,stroke-width:2px,color:#fff
style PHASE fill:#EC4899,stroke:#DB2777,stroke-width:2px,color:#fff
style GOV fill:#F43F5E,stroke:#E11D48,stroke-width:2px,color:#fff
style WF fill:#FB7185,stroke:#F43F5E,stroke-width:2px,color:#fff
style BM25 fill:#F59E0B,stroke:#D97706,stroke-width:2px,color:#000
style DSG fill:#F97316,stroke:#EA580C,stroke-width:2px,color:#fff
style REASON fill:#FBBF24,stroke:#F59E0B,stroke-width:2px,color:#000
style SPAWN fill:#FCD34D,stroke:#FBBF24,stroke-width:2px,color:#000
style AGENTS fill:#10B981,stroke:#047857,stroke-width:2px,color:#fff
style SKILLS fill:#06B6D4,stroke:#0891B2,stroke-width:2px,color:#fff
style CSV fill:#14B8A6,stroke:#0D9488,stroke-width:2px,color:#fff
style MEM fill:#2DD4BF,stroke:#14B8A6,stroke-width:2px,color:#000👥 Meet Your Team — 53 Agents
Executive Council (Tier 1)
These four agents govern everything. They are loaded first, always active, and have the highest authority.
| Agent | ID | Authority | Core Responsibility | |:------|:---|:----------|:--------------------| | 👑 Chief Technical Supervisor | CTS-001 | Highest | Architecture authority, merge control, final approval on all deployments and DB changes | | 🎯 Senior Full Stack Developer | SFS-001 | High | Primary orchestrator — routes all tasks, activates the Socratic Gate, delegates to departments | | 📋 Strategy Planner | SP-001 | High | Creates milestone plans, defines task breakdowns, manages the 4-phase planning methodology | | ⚖️ Risk & Compliance | RC-001 | High | Evaluates risks, flags compliance issues, assesses cost/benefit trade-offs |
Engineering Department (25 Agents)
| Sub-Division | Agents | ID Range | What They Build | |:-------------|:------:|:---------|:----------------| | 🔧 Backend | 10 | BE-001→010 | REST/GraphQL APIs, authentication (JWT, OAuth), microservices, caching, message queues, middleware | | 🎨 Frontend | 8 | FE-001→008 | React/Next.js/Vue components, state management, routing, responsive design, animations, accessibility | | 🗄️ Database | 5 | DB-001→005 | Schema design, Prisma/TypeORM migrations, query optimization, indexing, data modeling | | 📱 Mobile | 1 | MOB-001 | React Native, Flutter, platform-native iOS/Android | | 🎮 Game | 1 | GAME-001 | Game mechanics, physics engines, cross-platform game development |
Support Departments
| Department | Lead | Agents | Focus | |:-----------|:-----|:------:|:------| | 🧪 QA & Verification | QA-001 | 6 | Unit tests (Jest, Pytest), integration tests, E2E (Playwright), regression, code coverage audits | | 🛡️ Security | SEC-001 | 1 | OWASP Top 10 scanning, dependency auditing, threat modeling, shift-left security practices | | 📦 Product & Docs | PM-001 | 5 | PRDs, user stories, acceptance criteria, UX research, README generation | | 🚀 DevOps | DO-001 | 6 | Docker containerization, CI/CD pipelines, cloud deployment, monitoring, infrastructure-as-code | | 🔍 Intelligence | INTEL-001 | 1 | Legacy codebase archaeology, deep technical research, knowledge extraction | | 📢 Marketing | MKT-001 | 1 | GitHub SEO, AI search engine optimization (GEO), metadata strategy | | 🧠 Meta-Management | MM-001 | 4 | Memory file management, infinite loop detection, permission boundary enforcement |
🎨 UI&UX Intelligence Engine
The UI&UX Engine is Agent-Kit's built-in design brain. It's a Python-powered intelligence layer that gives every agent instant access to 600,000+ data points of structured design knowledge.
How It Works
When any agent needs design guidance (colors, typography, layout, component patterns, accessibility, dark mode), it queries the UI&UX Engine:
%%{init: {'theme': 'default'}}%%
flowchart TD
Q["🔍 Agent asks:<br/>SaaS dashboard with dark mode<br/>for a React + Tailwind project"] --> DD["🧭 Domain Detector<br/>━━━━━━━━━━━━━<br/>Scans query keywords<br/>Maps to best domain(s)"]
DD --> BM["⚡ BM25 Search Engine<br/>━━━━━━━━━━━━━<br/>Tokenize → IDF weight →<br/>Rank by relevance"]
BM --> D1["📚 18 Domain CSVs<br/>━━━━━━━━━━━━━<br/>General design knowledge"]
BM --> D2["📦 16 Stack CSVs<br/>━━━━━━━━━━━━━<br/>Framework-specific guidance"]
D1 --> DSG["🎨 Design System Generator<br/>━━━━━━━━━━━━━<br/>Aggregates multi-domain results<br/>Applies reasoning rules"]
D2 --> DSG
DSG --> OUT["✅ Complete Design System Output<br/>━━━━━━━━━━━━━<br/>• Color palette with dark mode variants<br/>• Typography scale and font pairings<br/>• Component patterns for React+Tailwind<br/>• Accessibility scores and WCAG guidance<br/>• Performance budgets per component<br/>• Privacy tier recommendations"]
style Q fill:#7C3AED,stroke:#5B21B6,stroke-width:2px,color:#fff
style DD fill:#2563EB,stroke:#1D4ED8,stroke-width:2px,color:#fff
style BM fill:#06B6D4,stroke:#0891B2,stroke-width:2px,color:#fff
style D1 fill:#EC4899,stroke:#DB2777,stroke-width:2px,color:#fff
style D2 fill:#F97316,stroke:#EA580C,stroke-width:2px,color:#fff
style DSG fill:#F59E0B,stroke:#D97706,stroke-width:3px,color:#000
style OUT fill:#10B981,stroke:#047857,stroke-width:3px,color:#fffThe 18 Search Domains
Every design question maps to one or more of these knowledge bases:
| # | Domain | Rows | What It Contains | |:-:|:-------|:----:|:-----------------| | 1 | 🎭 Styles | 1,000+ | CSS patterns, layout systems, spacing scales, shadows, borders | | 2 | 🎨 Colors | 1,200+ | Color palettes, contrast ratios, semantic color systems, brand guidelines | | 3 | 🔤 Typography | 800+ | Font stacks, type scales, line heights, responsive typography | | 4 | 🏠 Landing Pages | 2,400+ | Hero sections, CTAs, social proof patterns, conversion layouts | | 5 | 🛍️ Products | 1,500+ | Product cards, galleries, filtering patterns, cart UX | | 6 | 📊 Charts | 400+ | Data visualization, chart types, color coding for data | | 7 | ✨ Icons | 2,000+ | Icon systems, sizing conventions, accessibility for icons | | 8 | 🧩 UX Guidelines | 700+ | Interaction patterns, micro-interactions, user flow best practices | | 9 | 🌐 Web Interfaces | 500+ | Navigation, sidebars, modals, toast notifications | | 10 | ⚛️ React Performance | 800+ | Memoization, lazy loading, virtual lists, bundle optimization | | 11 | 💬 Prompts | 1,800+ | AI prompt templates for design decisions | | 12 | 💡 UI Reasoning | 1,200+ | Why certain designs work — backed by data | | 13 | 🎬 Animations | 500+ | Transition curves, duration guidelines, motion principles | | 14 | ♿ Accessibility | 600+ | WCAG 2.1, ARIA patterns, screen reader support | | 15 | 🌙 Dark Mode | 400+ | Dark theme strategies, color inversion rules, contrast in dark | | 16 | 🤖 AI Patterns | 400+ | AI-native UI components, chat interfaces, loading states | | 17 | 📝 Forms | 500+ | Form validation UX, multi-step wizards, input patterns | | 18 | ⚠️ Error States | 400+ | Error messages, empty states, fallback UI, retry patterns |
The 16 Framework Stacks
Framework-specific guidance with 15-column schema including 2026-ready columns:
| Stack | Columns Include |
|:------|:----------------|
| ⚛️ React, ▲ Next.js, 💚 Vue, 💚 Nuxt, 🔥 Svelte, 🅰️ Angular, 🚀 Astro, 💿 Remix, 🦀 Tauri, 💙 Flutter, 🍎 SwiftUI, 📱 React Native, 🤖 Jetpack Compose, 🧩 shadcn, 🌊 Tailwind, 💚 Nuxt UI | Component_Name, Category, Use_Case, Code_Example, Accessibility_Score, Dark_Mode_Strategy, AI_Integration_Level, Privacy_Tier, Agent_Readiness, Performance_Budget |
[!NOTE] 2026 Columns Explained:
Dark_Mode_Strategy— How to implement dark mode for each componentAI_Integration_Level— How AI-ready the component is (chat, voice, generative)Privacy_Tier— GDPR/CCPA/HIPAA compliance tierAgent_Readiness— Whether the component works with AI agent workflowsPerformance_Budget— Max acceptable load time / bundle size
🚦 The Iron Well Protocol
This is the governance system that prevents chaos. Every complex task goes through this exact flow:
%%{init: {'theme': 'default'}}%%
sequenceDiagram
autonumber
actor Dev as 🧑💻 You (Developer)
participant SFS as 🎯 SFS-001<br/>Orchestrator
participant GATE as 🚦 Socratic Gate
participant SP as 📋 SP-001<br/>Planner
participant ENG as 🔧 Engineering<br/>Agent(s)
participant UX as 🎨 UI&UX Engine
participant QA as 🧪 QA Agent(s)
participant CTS as 👑 CTS-001<br/>Supervisor
Dev->>SFS: "Build a user dashboard with real-time analytics"
Note over SFS,GATE: PHASE 0 — SOCRATIC GATE (Mandatory)
SFS->>Dev: Question 1: What data sources feed the dashboard?
Dev->>SFS: PostgreSQL + WebSocket events
SFS->>Dev: Question 2: Who are the users — admins or end users?
Dev->>SFS: Admin users only, internal tool
SFS->>Dev: Question 3: Any compliance constraints?
Dev->>SFS: SOC 2 — no PII displayed
Note over SFS,SP: PHASE 1 — PLANNING (No Code Allowed)
SFS->>SP: Create milestone plan
SP-->>SFS: milestones.md with task breakdown
SFS->>Dev: Here is the plan — approve?
Dev->>SFS: ✅ Approved with one change
SFS->>SP: Update plan
SP-->>SFS: Updated milestones.md
Note over SFS,QA: PHASE 2 — EXECUTION (Code Allowed)
SFS->>ENG: Execute: Build dashboard API
ENG->>UX: Need design system for admin dashboard
UX-->>ENG: Color palette + typography + component patterns
ENG->>ENG: Implementing API + frontend + tests
ENG->>QA: Ready for review
Note over QA,CTS: VERIFICATION
QA->>QA: Run checklist.py audit
QA-->>CTS: All checks passed ✅
CTS->>Dev: 🚀 Dashboard delivered — ready for deploymentWhat the Socratic Gate Actually Does
The Socratic Gate is not optional. For any complex request (build, create, implement, refactor), the AI must ask at least 3 strategic questions before writing a single line of code.
| Question Type | Purpose | Example | |:--------------|:--------|:--------| | Scope | Prevent scope creep | "Should this dashboard also handle reporting export?" | | Users | Clarify audience | "Is this for technical admins or business stakeholders?" | | Constraints | Surface hidden requirements | "Any regulatory compliance? GDPR? SOC 2?" | | Trade-offs | Explore alternatives | "Real-time via WebSockets or polling every 30s?" | | Edge Cases | Prevent bugs before they exist | "What happens when the data source is temporarily unavailable?" |
[!TIP] Why this matters: Most AI coding tools just start building. Agent-Kit forces clarity first. The result: fewer rewrites, no misunderstandings, and production-quality output from the start.
⚡ Install & Setup
Method 1: Quick Start (Recommended)
The fastest way — one command, zero configuration:
npx @ab_aswini/agent-kit-p1 initThis scaffolds the complete .agent-os directory into your current project with all 53 agents, 42+ skills, 19 workflows, and the UI&UX engine.
Method 2: Global Installation
Install once, use everywhere:
# Install globally
npm install -g @ab_aswini/agent-kit-p1
# Navigate to any project
cd your-project
# Deploy Agent-Kit
agent-kit initMethod 3: Interactive Mode (Choose Your Team)
Don't need all 53 agents? Pick a company archetype:
npx @ab_aswini/agent-kit-p1 init --interactiveThis walks you through an interactive menu to select your project type (SaaS, Mobile, E-commerce, etc.) and deploys only the agents you need.
Method 4: Add to package.json
npm install --save-dev @ab_aswini/agent-kit-p1Then add a setup script:
{
"scripts": {
"setup:agents": "agent-kit init",
"health": "agent-kit doctor"
}
}🩺 Health Check
After installation, verify everything is in place:
npx @ab_aswini/agent-kit-p1 doctorThis validates: agent files exist, directory structure is correct, manifest is consistent, and skills are properly linked.
🎬 First Steps After Install
| Step | Command / Action | What Happens |
|:----:|:-----------------|:-------------|
| 1 | Open project in Cursor / VS Code / Windsurf | Your AI IDE is ready |
| 2 | Tell your AI: "Read .agent-os/agents/tier-1/chief-technical-supervisor.agent.md" | CTS-001 activates as your technical authority |
| 3 | Run python scripts/checklist.py | Validates full project health |
| 4 | Run python scripts/spawn_agent.py BE-001 | Generates a ready-to-paste system prompt for Backend Agent 001 |
| 5 | Start building | Tell your AI what to build — the Socratic Gate activates automatically |
📖 Full CLI Reference
| Command | Description |
|:--------|:------------|
| agent-kit init | Deploy all 53 agents, skills, workflows, and UI&UX engine |
| agent-kit init -i / agent-kit init --interactive | Interactive archetype selection (choose your team size) |
| agent-kit doctor | Validate system health and flag missing components |
[!IMPORTANT] Requirements: Node.js 16+ and npm 7+. Python 3.8+ is needed for the UI&UX engine and audit scripts.
🎯 Company Archetypes
When you run agent-kit init --interactive, you choose from 12 pre-configured company archetypes. Each archetype deploys a curated subset of agents, skills, and departments tailored to your project type.
%%{init: {'theme': 'default'}}%%
flowchart TD
START(("🏗️ Choose Your<br/>Company Type")) --> S["🚀 SaaS Startup<br/>44 agents"]
START --> M["📱 Mobile App<br/>26 agents"]
START --> EC["🛒 E-commerce<br/>45 agents"]
START --> P["🖼️ Portfolio<br/>14 agents"]
START --> D["📊 Dashboard<br/>29 agents"]
START --> B["📝 Blog / CMS<br/>21 agents"]
START --> ED["🎓 EdTech<br/>32 agents"]
START --> HC["🏥 Healthcare<br/>40 agents"]
START --> MP["🏪 Marketplace<br/>47 agents"]
START --> AI["🤖 AI / ChatBot<br/>30 agents"]
START --> G["🎮 Gaming<br/>23 agents"]
START --> API["⚙️ API-First<br/>33 agents"]
style START fill:#7C3AED,stroke:#5B21B6,stroke-width:3px,color:#fff
style S fill:#2563EB,stroke:#1D4ED8,stroke-width:2px,color:#fff
style M fill:#EC4899,stroke:#DB2777,stroke-width:2px,color:#fff
style EC fill:#F97316,stroke:#EA580C,stroke-width:2px,color:#fff
style P fill:#10B981,stroke:#047857,stroke-width:2px,color:#fff
style D fill:#06B6D4,stroke:#0891B2,stroke-width:2px,color:#fff
style B fill:#14B8A6,stroke:#0D9488,stroke-width:2px,color:#fff
style ED fill:#8B5CF6,stroke:#7C3AED,stroke-width:2px,color:#fff
style HC fill:#EF4444,stroke:#DC2626,stroke-width:2px,color:#fff
style MP fill:#F59E0B,stroke:#D97706,stroke-width:2px,color:#000
style AI fill:#6366F1,stroke:#4F46E5,stroke-width:2px,color:#fff
style G fill:#84CC16,stroke:#65A30D,stroke-width:2px,color:#000
style API fill:#FBBF24,stroke:#F59E0B,stroke-width:2px,color:#000What Each Archetype Includes
| Archetype | Agents | Departments Included | Required Skills | |:----------|:------:|:---------------------|:----------------| | 🚀 SaaS Startup | 44 | Engineering (full), Security, QA, Product, DevOps, Meta | api-patterns, auth, database-design, clean-code, testing, deployment, frontend, nextjs-react, security | | 📱 Mobile App | 26 | Engineering (mobile + backend), QA, Product, Meta | mobile-design, api-patterns, auth, testing | | 🛒 E-commerce | 45 | Engineering (full), Security, QA, Product, DevOps, Marketing, Meta | Same as SaaS + seo-fundamentals | | 🖼️ Portfolio | 14 | Engineering (frontend), Product, Meta | frontend-design, clean-code | | 📊 Dashboard | 29 | Engineering (backend + frontend + DB), QA, Meta | api-patterns, database-design, frontend-design | | 📝 Blog / CMS | 21 | Engineering (frontend + backend), Product, Marketing, Meta | frontend-design, seo-fundamentals | | 🎓 EdTech | 32 | Engineering (full), QA, Product, Meta | auth, database-design, frontend-design | | 🏥 Healthcare | 40 | Engineering (full), Security, QA, Product, DevOps, Meta | security, auth, database-design (HIPAA focus) | | 🏪 Marketplace | 47 | Engineering (full), Security, QA, Product, DevOps, Marketing, Meta | Full skill suite | | 🤖 AI / ChatBot | 30 | Engineering (backend + frontend), Intelligence, QA, Meta | api-patterns, frontend-design | | 🎮 Gaming | 23 | Engineering (game + frontend), QA, Meta | game-development, frontend-design | | ⚙️ API-First | 33 | Engineering (backend + DB), Security, QA, DevOps, Meta | api-patterns, database-design, security, deployment |
[!TIP] Start small, scale up. You can always run
agent-kit initlater to upgrade to the full 53-agent fleet. The CLI is additive — it won't overwrite existing agents.
⚙️ Tech Stack
| Layer | Technology | Purpose |
|:-----:|:-----------|:--------|
| 📦 Distribution | NPM / NPX | One-command installation, versioning, global installs |
| ⌨️ CLI | Node.js + fs-extra + picocolors | Init scaffolding, doctor validation, interactive archetype menu |
| 🏗️ Agent Protocols | Markdown (.md) + JSON manifests | Agent definitions with identity, rules, boundaries, anti-patterns |
| 🔍 Search Engine | Python + custom BM25 | Full-text search over 34 CSV datasets with tokenization and IDF weighting |
| 🎨 Design Generator | Python + CSV + JSON | Multi-domain aggregation → automated design system output |
| 🔐 Auth Reference | FastAPI + Bcrypt + JWT | Production-ready authentication template for backend agents |
| ✔️ Audit Engine | checklist.py (Python) | Priority-ordered health validation: Security → Lint → Schema → Tests → UX → SEO |
| 🧠 Memory System | Structured Markdown | Persistent project context: architecture.md, decisions.md, conventions.md, risk-log.md |
| 📋 Workflows | Markdown SOPs | 19 pre-built standard operating procedures with step-by-step execution |
🛡️ Security & Privacy
Agent-Kit enforces security through seven distinct mechanisms:
| # | Mechanism | How It Works |
|:-:|:----------|:-------------|
| 1 | 🚦 Socratic Gate | Forces 3+ strategic questions before any complex task — prevents the AI from acting on misunderstood requirements |
| 2 | 👑 Tiered Authority (RBAC) | 4-tier access control: Owner → Executive → Department → Meta. No agent can exceed its tier permissions |
| 3 | 🛡️ Iron Well 2-Phase | Phase 1 = planning only (no code). Phase 2 = execution only (plan must be approved first). No mixing. |
| 4 | 🔒 Privacy Columns | Every CSV dataset includes Privacy_Tier (GDPR, CCPA, HIPAA levels), consent-before-track patterns, and data minimization guidelines |
| 5 | 🔍 SEC-001 Agent | Dedicated security specialist that performs threat modeling, dependency auditing, and OWASP Top 10 scanning |
| 6 | 🐒 Chaos Testing | security_chaos_test.py simulates real-world attack vectors against your codebase to find vulnerabilities proactively |
| 7 | 📡 API Contract Sync | sync_api_contracts.py ensures backend API responses match what the frontend expects — preventing integration bugs at deploy time |
CTS-001 Approval Checklist
Before any code reaches production, CTS-001 verifies:
✅ Code follows project conventions
✅ No security vulnerabilities introduced
✅ Performance impact is acceptable
✅ Tests are adequate (unit + integration)
✅ Documentation is updated
✅ Memory files are current
✅ No permission boundaries violated🚢 Deployment Pipeline
From your IDE to your end user's project:
%%{init: {'theme': 'default'}}%%
flowchart LR
DEV["🧑💻 Developer<br/>writes or modifies<br/>agents / skills / data"] -->|"git push"| GH["🐙 GitHub<br/>Repository"]
GH -->|"CI triggers"| LINT["🔍 Lint &<br/>Type Check"]
LINT -->|"pass"| TEST["🧪 Tests<br/>Unit + Integration"]
TEST -->|"pass"| AUDIT["✔️ checklist.py<br/>360° Health Audit"]
AUDIT -->|"✅ all pass"| VSN["📋 Version Bump<br/>npm version patch"]
VSN --> PUB["📦 npm publish<br/>@ab_aswini/agent-kit-p1"]
PUB --> USER["🚀 End User<br/>npx init → .agent-os deployed"]
AUDIT -->|"❌ fail"| DEV
style DEV fill:#6366F1,color:#fff,stroke:#4F46E5,stroke-width:2px
style GH fill:#7C3AED,color:#fff,stroke:#5B21B6,stroke-width:2px
style LINT fill:#2563EB,color:#fff,stroke:#1D4ED8,stroke-width:2px
style TEST fill:#06B6D4,color:#fff,stroke:#0891B2,stroke-width:2px
style AUDIT fill:#F59E0B,color:#000,stroke:#D97706,stroke-width:2px
style VSN fill:#EC4899,color:#fff,stroke:#DB2777,stroke-width:2px
style PUB fill:#10B981,color:#fff,stroke:#047857,stroke-width:3px
style USER fill:#7C3AED,color:#fff,stroke:#5B21B6,stroke-width:3px🗺️ Roadmap
| Initiative | Status | Description | |:-----------|:------:|:------------| | 🏪 Agent Marketplace | 🔜 Planned | Community-contributed agent templates, skills, and CSV datasets | | 🔀 Multi-LLM Router | 🔜 Planned | Assign different AI models to different agents (GPT for planning, Claude for code, Gemini for design) | | 📊 Live Dashboard | 🔜 Planned | Web-based fleet monitoring — see which agents are active, task queues, and performance | | 🔌 MCP Server | 🔜 Planned | Native Model Context Protocol server for direct AI tool-calling integration | | 🎙️ Voice-First Agents | 🧪 Research | Voice-driven agent interaction for hands-free development | | 🤝 Agent-to-Agent Comms | 🧪 Research | Direct inter-agent messaging without routing through the orchestrator |
🤝 Contributing
Agent-Kit is fully modular — every agent, skill, and dataset is an independent file. Contributing is straightforward.
Add a New Agent
- Create
your-agent.agent.mdin.agent-os/agents/<department>/ - Follow the standard template:
- Identity — Agent ID, tier, role description
- Protocol — Step-by-step operational procedure
- Boundaries — What files it can read/write
- Anti-Patterns — Common mistakes to avoid
- Register in
manifest.jsonunder the appropriate department - Submit a PR with a description of the agent's purpose
Add a New Skill
- Create
.agent-os/skills/your-skill/SKILL.md - Add YAML frontmatter with
nameanddescription - Include helper scripts in
scripts/and examples inexamples/if applicable
Add a New CSV Dataset
- Add your CSV file:
- Domain CSVs →
.agent-os/.shared/UI&UX/data/your-domain.csv - Stack CSVs →
.agent-os/.shared/UI&UX/data/stacks/your-stack.csv
- Domain CSVs →
- Register it in
scripts/core.py→CSV_CONFIGorSTACK_CONFIG - Add detection keywords to
detect_domain()so the BM25 engine can auto-route queries
Workflow
Fork → Branch → Implement → Test → PR → Review → Merge📄 License
This project is licensed under the MIT License — see LICENSE for details.
🏭 Built for solo developers who think like companies.
53 agents · 42+ skills · 19 workflows · 18 design domains · 16 framework stacks
Iron Well v2.0 governance · BM25 search · Socratic Gate · 12 company archetypes
⭐ If Agent-Kit helps your workflow, star this repo — it helps others find it.
