npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@aeye/openai

v0.3.2

Published

@aeye OpenAI - OpenAI integration for @aeye

Downloads

268

Readme

@aeye/openai

OpenAI provider for the @aeye (AI TypeScript) framework. This package provides a comprehensive integration with OpenAI's API, supporting the full range of capabilities including chat completions, image generation, speech synthesis, transcription, and embeddings.

Features

  • Chat Completions: Support for GPT-4, GPT-4 Turbo, GPT-3.5 Turbo, and other chat models
  • Vision: GPT-4 Vision (GPT-4V) for image understanding
  • Reasoning Models: o1, o1-mini, o3-mini for advanced reasoning tasks
  • Image Generation: DALL-E 2 and DALL-E 3 for creating images from text
  • Speech-to-Text: Whisper models for audio transcription
  • Text-to-Speech: TTS models for voice synthesis
  • Embeddings: Text embeddings for semantic search and similarity
  • Function Calling: Tool/function calling with automatic schema conversion
  • Structured Outputs: JSON mode and schema-based structured outputs
  • Streaming: Real-time streaming responses for chat completions
  • Multi-modal: Support for text, images, audio, and files in conversations
  • Extensible: Base class for OpenAI-compatible providers (Azure OpenAI, OpenRouter, etc.)

Installation

npm install @aeye/openai @aeye/ai @aeye/core openai zod

Quick Start

import { OpenAIProvider } from '@aeye/openai';

// Create provider instance
const provider = new OpenAIProvider({
  apiKey: process.env.OPENAI_API_KEY!,
});

// Create executor
const executor = provider.createExecutor();

// Make a request
const response = await executor(
  {
    messages: [
      { role: 'user', content: 'Tell me a joke about TypeScript' }
    ]
  },
  {},
  { model: 'gpt-4' }
);

console.log(response.content);

Configuration

Basic Configuration

import { OpenAIProvider, OpenAIConfig } from '@aeye/openai';

const config: OpenAIConfig = {
  apiKey: process.env.OPENAI_API_KEY!,
  organization: 'org-123456', // Optional: for multi-org accounts
};

const provider = new OpenAIProvider(config);

Custom Base URL (for Azure OpenAI or compatible APIs)

const provider = new OpenAIProvider({
  apiKey: process.env.AZURE_API_KEY!,
  baseURL: 'https://your-resource.openai.azure.com/openai/deployments/your-deployment',
});

Usage Examples

Chat Completions

Basic Chat

const executor = provider.createExecutor();

const response = await executor(
  {
    messages: [
      { role: 'system', content: 'You are a helpful assistant.' },
      { role: 'user', content: 'What is the capital of France?' }
    ],
    temperature: 0.7,
    maxTokens: 150,
  },
  {},
  { model: 'gpt-4' }
);

console.log(response.content);
console.log('Tokens used:', response.usage.totalTokens);

Streaming Chat

const streamer = provider.createStreamer();

for await (const chunk of streamer(
  {
    messages: [
      { role: 'user', content: 'Write a short story about a robot' }
    ]
  },
  {},
  { model: 'gpt-4' }
)) {
  if (chunk.content) {
    process.stdout.write(chunk.content);
  }
}

Multi-turn Conversation

const conversation = [
  { role: 'system' as const, content: 'You are a helpful assistant.' },
  { role: 'user' as const, content: 'What is TypeScript?' },
];

// First response
let response = await executor(
  { messages: conversation },
  {},
  { model: 'gpt-4' }
);

conversation.push({ role: 'assistant', content: response.content });
conversation.push({ role: 'user', content: 'Can you give me an example?' });

// Second response
response = await executor(
  { messages: conversation },
  {},
  { model: 'gpt-4' }
);

Vision (GPT-4V)

Analyze an Image

const response = await executor(
  {
    messages: [
      {
        role: 'user',
        content: [
          { type: 'text', content: 'What is in this image?' },
          {
            type: 'image',
            content: 'https://example.com/image.jpg',
            // Or use base64: content: '...'
          }
        ]
      }
    ]
  },
  {},
  { model: 'gpt-4-vision-preview' }
);

Multiple Images

const response = await executor(
  {
    messages: [
      {
        role: 'user',
        content: [
          { type: 'text', content: 'Compare these two images' },
          { type: 'image', content: 'https://example.com/image1.jpg' },
          { type: 'image', content: 'https://example.com/image2.jpg' }
        ]
      }
    ]
  },
  {},
  { model: 'gpt-4-vision-preview' }
);

Function Calling

Define and Use Tools

import z from 'zod';

const response = await executor(
  {
    messages: [
      { role: 'user', content: 'What is the weather like in San Francisco?' }
    ],
    tools: [
      {
        name: 'get_current_weather',
        description: 'Get the current weather in a given location',
        parameters: z.object({
          location: z.string().describe('The city and state, e.g., San Francisco, CA'),
          unit: z.enum(['celsius', 'fahrenheit']).optional(),
        }),
      }
    ],
    toolChoice: 'auto', // Can be 'auto', 'required', 'none', or { tool: 'tool_name' }
  },
  {},
  { model: 'gpt-4' }
);

if (response.toolCalls) {
  for (const toolCall of response.toolCalls) {
    console.log('Tool:', toolCall.name);
    console.log('Arguments:', JSON.parse(toolCall.arguments));

    // Execute the function and send result back
    const functionResult = await getWeather(JSON.parse(toolCall.arguments));

    const finalResponse = await executor(
      {
        messages: [
          { role: 'user', content: 'What is the weather like in San Francisco?' },
          { role: 'assistant', content: '', toolCalls: [toolCall] },
          {
            role: 'tool',
            content: JSON.stringify(functionResult),
            toolCallId: toolCall.id,
          }
        ]
      },
      {},
      { model: 'gpt-4' }
    );
  }
}

Force Specific Tool

const response = await executor(
  {
    messages: [
      { role: 'user', content: 'Get the weather for Boston' }
    ],
    tools: [
      {
        name: 'get_weather',
        description: 'Get weather information',
        parameters: z.object({
          location: z.string(),
        }),
      }
    ],
    toolChoice: { tool: 'get_weather' }, // Force this specific tool
  },
  {},
  { model: 'gpt-4' }
);

Structured Outputs

JSON Mode

const response = await executor(
  {
    messages: [
      {
        role: 'user',
        content: 'List three famous scientists and their main contributions in JSON format'
      }
    ],
    responseFormat: 'json', // Ensures valid JSON output
  },
  {},
  { model: 'gpt-4' }
);

const scientists = JSON.parse(response.content);

Schema-based Structured Output

import z from 'zod';

const PersonSchema = z.object({
  name: z.string(),
  age: z.number(),
  occupation: z.string(),
  hobbies: z.array(z.string()),
});

const response = await executor(
  {
    messages: [
      {
        role: 'user',
        content: 'Generate a profile for a fictional software engineer'
      }
    ],
    responseFormat: PersonSchema, // Strict schema enforcement
  },
  {},
  { model: 'gpt-4' }
);

// Response is guaranteed to match the schema
const person = JSON.parse(response.content);
console.log(person.name, person.age); // Type-safe

Image Generation (DALL-E)

Generate with DALL-E 3

const imageResponse = await provider.generateImage(
  {
    prompt: 'A serene landscape with mountains and a lake at sunset',
    model: 'dall-e-3',
    size: '1024x1024',
    quality: 'hd', // 'standard' or 'hd'
    style: 'vivid', // 'vivid' or 'natural'
    n: 1,
  },
  {}
);

console.log('Generated image URL:', imageResponse.images[0].url);
console.log('Revised prompt:', imageResponse.images[0].revisedPrompt);

Generate Multiple Images with DALL-E 2

const imageResponse = await provider.generateImage(
  {
    prompt: 'A cute robot playing with a puppy',
    model: 'dall-e-2',
    size: '512x512',
    n: 3, // Generate 3 variations
  },
  {}
);

imageResponse.images.forEach((img, i) => {
  console.log(`Image ${i + 1}:`, img.url);
});

Get Base64 Image Data

const imageResponse = await provider.generateImage(
  {
    prompt: 'A futuristic city skyline',
    model: 'dall-e-3',
    responseFormat: 'b64_json', // Get base64 instead of URL
  },
  {}
);

const base64Image = imageResponse.images[0].b64_json;
// Save or process the base64 data

Speech Synthesis (TTS)

Generate Speech

import fs from 'fs';

const speechResponse = await provider.generateSpeech(
  {
    text: 'Hello! This is a text-to-speech example using OpenAI.',
    model: 'tts-1', // or 'tts-1-hd' for higher quality
    voice: 'alloy', // alloy, echo, fable, onyx, nova, shimmer
    speed: 1.0, // 0.25 to 4.0
    responseFormat: 'mp3', // mp3, opus, aac, flac, wav, pcm
  },
  {}
);

// Save to file
fs.writeFileSync('output.mp3', speechResponse.audioBuffer);
console.log('Audio saved to output.mp3');

Different Voices

const voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'];

for (const voice of voices) {
  const response = await provider.generateSpeech(
    {
      text: `This is the ${voice} voice speaking.`,
      voice,
      model: 'tts-1',
    },
    {}
  );

  fs.writeFileSync(`voice_${voice}.mp3`, response.audioBuffer);
}

Transcription (Whisper)

Transcribe Audio File

import fs from 'fs';

const audioBuffer = fs.readFileSync('audio.mp3');

const transcription = await provider.transcribe(
  {
    audio: audioBuffer,
    model: 'whisper-1',
    language: 'en', // Optional: ISO-639-1 language code
    prompt: 'This is a podcast about AI and technology', // Optional: context
  },
  {}
);

console.log('Transcription:', transcription.text);

Transcribe with Timestamps

const transcription = await provider.transcribe(
  {
    audio: audioBuffer,
    model: 'whisper-1',
    responseFormat: 'verbose_json',
    timestampGranularities: ['word', 'segment'],
  },
  {}
);

console.log('Full text:', transcription.text);
console.log('Language:', transcription.language);
console.log('Duration:', transcription.duration);

// Word-level timestamps
transcription.words?.forEach(word => {
  console.log(`${word.word}: ${word.start}s - ${word.end}s`);
});

// Segment-level timestamps
transcription.segments?.forEach(segment => {
  console.log(`${segment.text}: ${segment.start}s - ${segment.end}s`);
});

Different Output Formats

// Plain text
const text = await provider.transcribe(
  { audio: audioBuffer, responseFormat: 'text' },
  {}
);

// SRT subtitles
const srt = await provider.transcribe(
  { audio: audioBuffer, responseFormat: 'srt' },
  {}
);

// VTT subtitles
const vtt = await provider.transcribe(
  { audio: audioBuffer, responseFormat: 'vtt' },
  {}
);

Embeddings

Generate Embeddings

const embeddingResponse = await provider.embed(
  {
    texts: [
      'The quick brown fox jumps over the lazy dog',
      'Machine learning is a subset of artificial intelligence',
      'OpenAI develops advanced AI models'
    ],
    model: 'text-embedding-3-small', // or 'text-embedding-3-large'
  },
  {}
);

embeddingResponse.embeddings.forEach((item, i) => {
  console.log(`Embedding ${i}:`, item.embedding.length, 'dimensions');
});

console.log('Tokens used:', embeddingResponse.usage?.text?.input);

Custom Dimensions (for smaller embeddings)

const embeddingResponse = await provider.embed(
  {
    texts: ['Some text to embed'],
    model: 'text-embedding-3-large',
    dimensions: 256, // Reduce from default 3072 to 256
  },
  {}
);

Calculate Similarity

function cosineSimilarity(a: number[], b: number[]): number {
  const dotProduct = a.reduce((sum, val, i) => sum + val * b[i], 0);
  const magnitudeA = Math.sqrt(a.reduce((sum, val) => sum + val * val, 0));
  const magnitudeB = Math.sqrt(b.reduce((sum, val) => sum + val * val, 0));
  return dotProduct / (magnitudeA * magnitudeB);
}

const response = await provider.embed(
  {
    texts: [
      'I love programming in TypeScript',
      'TypeScript is my favorite language',
      'I enjoy cooking Italian food'
    ],
    model: 'text-embedding-3-small',
  },
  {}
);

const [emb1, emb2, emb3] = response.embeddings.map(e => e.embedding);

console.log('Similarity 1-2:', cosineSimilarity(emb1, emb2)); // High similarity
console.log('Similarity 1-3:', cosineSimilarity(emb1, emb3)); // Low similarity

Reasoning Models (o1, o3-mini)

Using o1 Models

The o1 and o3-mini models use extended thinking to solve complex problems.

const response = await executor(
  {
    messages: [
      {
        role: 'user',
        content: 'Solve this logic puzzle: There are 100 doors, all closed. You make 100 passes. On pass 1, toggle all doors. On pass 2, toggle every 2nd door. On pass 3, toggle every 3rd door, etc. Which doors are open after 100 passes?'
      }
    ],
    // Note: o1 models don't support temperature or system messages
  },
  {},
  { model: 'o1-preview' } // or 'o1-mini', 'o3-mini'
);

console.log('Reasoning:', response.reasoning); // Internal reasoning process
console.log('Answer:', response.content);

Important: o1 models have different capabilities:

  • No system messages support (use user messages instead)
  • No temperature control (model uses internal reasoning)
  • No streaming support
  • Extended processing time for complex problems

Advanced Features

Abort Requests

const controller = new AbortController();

// Set timeout
setTimeout(() => controller.abort(), 5000);

try {
  const response = await executor(
    { messages: [{ role: 'user', content: 'Tell me a long story' }] },
    {},
    { model: 'gpt-4' },
    controller.signal
  );
} catch (error) {
  if (error.name === 'AbortError') {
    console.log('Request was aborted');
  }
}

List Available Models

const models = await provider.listModels();

models.forEach(model => {
  console.log(`${model.id}: ${model.capabilities}`);
  console.log(`  Context window: ${model.contextWindow}`);
  console.log(`  Pricing: $${model.pricing.text.input}/1M input tokens`);
});

Check Provider Health

const isHealthy = await provider.checkHealth();
console.log('OpenAI API is', isHealthy ? 'accessible' : 'not accessible');

Default Metadata

// Set default metadata for all requests
provider.defaultMetadata = {
  model: 'gpt-4',
  user: 'user-123',
};

// Now model is automatically set
const response = await executor(
  { messages: [{ role: 'user', content: 'Hello' }] },
  {}
  // No need to pass { model: 'gpt-4' }
);

Extending for Custom Providers

The OpenAIProvider class can be extended to support OpenAI-compatible APIs like Azure OpenAI, OpenRouter, or custom deployments.

Example: Custom Provider

import { OpenAIProvider, OpenAIConfig } from '@aeye/openai';
import OpenAI from 'openai';

interface CustomConfig extends OpenAIConfig {
  customOption?: string;
}

class CustomProvider extends OpenAIProvider<CustomConfig> {
  readonly name = 'custom-provider';

  protected createClient(config: CustomConfig): OpenAI {
    return new OpenAI({
      apiKey: config.apiKey,
      baseURL: 'https://api.custom-provider.com/v1',
      defaultHeaders: {
        'X-Custom-Header': config.customOption || '',
      },
    });
  }

  protected customizeChatParams(params: any, config: CustomConfig, request: any) {
    // Add custom parameters
    return {
      ...params,
      custom_param: config.customOption,
    };
  }
}

// Use the custom provider
const customProvider = new CustomProvider({
  apiKey: process.env.CUSTOM_API_KEY!,
  customOption: 'value',
});

Example: Azure OpenAI

class AzureOpenAIProvider extends OpenAIProvider {
  readonly name = 'azure-openai';

  protected createClient(config: OpenAIConfig): OpenAI {
    return new OpenAI({
      apiKey: config.apiKey,
      baseURL: config.baseURL, // Azure endpoint
      defaultQuery: { 'api-version': '2024-02-01' },
    });
  }
}

const azureProvider = new AzureOpenAIProvider({
  apiKey: process.env.AZURE_OPENAI_KEY!,
  baseURL: 'https://your-resource.openai.azure.com/openai/deployments/your-deployment',
});

Configuration Options

OpenAIConfig

| Property | Type | Required | Description | |----------|------|----------|-------------| | apiKey | string | Yes | OpenAI API key | | baseURL | string | No | Custom base URL for API endpoint | | organization | string | No | OpenAI organization ID |

Request Parameters

Chat Completion Request

| Parameter | Type | Description | |-----------|------|-------------| | messages | Message[] | Array of conversation messages | | temperature | number | Sampling temperature (0-2) | | topP | number | Nucleus sampling parameter | | maxTokens | number | Maximum tokens to generate | | stop | string \| string[] | Stop sequences | | tools | Tool[] | Function definitions for tool calling | | toolChoice | 'auto' \| 'required' \| 'none' \| { tool: string } | Tool selection mode | | responseFormat | 'text' \| 'json' \| ZodSchema | Response format constraint |

Image Generation Request

| Parameter | Type | Description | |-----------|------|-------------| | prompt | string | Text description of desired image | | model | string | Model to use (dall-e-2, dall-e-3) | | size | string | Image size (512x512, 1024x1024, etc.) | | quality | 'standard' \| 'hd' | Image quality (DALL-E 3 only) | | style | 'vivid' \| 'natural' | Image style (DALL-E 3 only) | | n | number | Number of images to generate | | responseFormat | 'url' \| 'b64_json' | Response format |

Transcription Request

| Parameter | Type | Description | |-----------|------|-------------| | audio | Buffer \| string \| Blob | Audio file to transcribe | | model | string | Model to use (whisper-1) | | language | string | ISO-639-1 language code | | prompt | string | Context for better accuracy | | responseFormat | 'json' \| 'text' \| 'srt' \| 'vtt' \| 'verbose_json' | Output format | | timestampGranularities | ('word' \| 'segment')[] | Timestamp detail level | | temperature | number | Sampling temperature |

Speech Synthesis Request

| Parameter | Type | Description | |-----------|------|-------------| | text | string | Text to convert to speech | | model | string | Model to use (tts-1, tts-1-hd) | | voice | string | Voice ID (alloy, echo, fable, onyx, nova, shimmer) | | speed | number | Playback speed (0.25-4.0) | | responseFormat | 'mp3' \| 'opus' \| 'aac' \| 'flac' \| 'wav' \| 'pcm' | Audio format |

Embedding Request

| Parameter | Type | Description | |-----------|------|-------------| | texts | string[] | Texts to embed | | model | string | Model to use (text-embedding-3-small, text-embedding-3-large, text-embedding-ada-002) | | dimensions | number | Output dimensions (embedding-3 models only) | | encodingFormat | 'float' \| 'base64' | Encoding format |

Error Handling

The provider throws specific error types for different failure scenarios:

import { ProviderError, RateLimitError, ProviderAuthError } from '@aeye/openai';

try {
  const response = await executor(
    { messages: [{ role: 'user', content: 'Hello' }] },
    {},
    { model: 'gpt-4' }
  );
} catch (error) {
  if (error instanceof RateLimitError) {
    console.error('Rate limit exceeded');
    if (error.retryAfter) {
      console.log(`Retry after ${error.retryAfter} seconds`);
    }
  } else if (error instanceof ProviderAuthError) {
    console.error('Authentication failed - check your API key');
  } else if (error instanceof ProviderError) {
    console.error(`Provider error: ${error.message}`);
    console.error('Original error:', error.cause);
  }
}

Error Types

  • ProviderError: Base error for all provider-related errors
  • ProviderAuthError: Authentication/authorization failures
  • RateLimitError: Rate limit exceeded (includes retryAfter if available)
  • ProviderRateLimitError: Specialized rate limit error
  • ProviderQuotaError: Quota/usage limit exceeded

API Reference

OpenAIProvider

Main provider class implementing the @aeye Provider interface.

Constructor: new OpenAIProvider(config: OpenAIConfig)

Methods:

  • listModels(config?: TConfig): Promise<ModelInfo[]> - List available models
  • checkHealth(config?: TConfig): Promise<boolean> - Check API health
  • createExecutor<TContext, TMetadata>(config?: TConfig): Executor - Create chat executor
  • createStreamer<TContext, TMetadata>(config?: TConfig): Streamer - Create streaming executor
  • generateImage<TContext>(request, ctx, config?): Promise<ImageGenerationResponse> - Generate images
  • transcribe<TContext>(request, ctx, config?): Promise<TranscriptionResponse> - Transcribe audio
  • generateSpeech<TContext>(request, ctx, config?): Promise<SpeechResponse> - Generate speech
  • embed<TContext>(request, ctx, config?): Promise<EmbeddingResponse> - Generate embeddings

Protected Methods (for extending):

  • createClient(config): OpenAI - Create OpenAI client
  • convertModel(model): ModelInfo - Convert model format
  • convertMessages(request): OpenAI.ChatCompletionMessageParam[] - Convert messages
  • convertTools(request): OpenAI.ChatCompletionTool[] - Convert tools
  • convertToolChoice(request): OpenAI.ChatCompletionToolChoiceOption - Convert tool choice
  • convertResponseFormat(request): ResponseFormat - Convert response format
  • customizeChatParams(params, config, request) - Customize chat params
  • customizeImageParams(params, config) - Customize image params
  • customizeTranscriptionParams(params, config) - Customize transcription params
  • customizeSpeechParams(params, config) - Customize speech params
  • customizeEmbeddingParams(params, config) - Customize embedding params

Model Support

Chat Models

  • GPT-4 Turbo: gpt-4-turbo, gpt-4-turbo-preview
  • GPT-4: gpt-4, gpt-4-0613, gpt-4-32k
  • GPT-4 Vision: gpt-4-vision-preview, gpt-4-turbo-2024-04-09
  • GPT-3.5 Turbo: gpt-3.5-turbo, gpt-3.5-turbo-16k
  • Reasoning: o1-preview, o1-mini, o3-mini

Image Models

  • DALL-E 3: dall-e-3
  • DALL-E 2: dall-e-2

Audio Models

  • Whisper: whisper-1
  • TTS: tts-1, tts-1-hd

Embedding Models

  • Embedding v3: text-embedding-3-small, text-embedding-3-large
  • Embedding v2: text-embedding-ada-002

Best Practices

  1. API Key Security: Never hardcode API keys. Use environment variables or secure key management.

  2. Error Handling: Always wrap API calls in try-catch blocks and handle rate limits gracefully.

  3. Streaming for Long Responses: Use streaming for better user experience with lengthy responses.

  4. Token Management: Monitor token usage to control costs. Use maxTokens to limit response length.

  5. Model Selection: Choose the appropriate model for your use case:

    • GPT-4 for complex tasks requiring high accuracy
    • GPT-3.5 Turbo for simpler tasks and faster responses
    • o1/o3-mini for reasoning-heavy problems
  6. Function Calling: Use structured schemas with Zod for type-safe function definitions.

  7. Retry Logic: Implement exponential backoff for rate limit errors.

  8. Context Window: Be aware of model context limits and truncate messages if needed.

Related Packages

License

GPL-3.0

Contributing

Contributions are welcome! Please see the main @aeye repository for contribution guidelines.

Support

For issues and questions:

  • GitHub Issues: https://github.com/ClickerMonkey/aeye/issues
  • Documentation: https://github.com/ClickerMonkey/aeye

Changelog

See CHANGELOG.md for version history and updates.