@agentic-robotics/mcp
v0.2.2
Published
Model Context Protocol server for agentic robotics with AgentDB integration
Maintainers
Readme
@agentic-robotics/mcp
Model Context Protocol (MCP) server for agentic robotics with AgentDB memory and agentic-flow orchestration.
Features
- 🤖 21 MCP Tools - Complete AI-robot integration toolkit
- 🧠 AgentDB Memory - 13,000x faster than CLI (reflexion, skills, causal reasoning)
- 🌊 Agentic Flow - 66 AI agents + 213 MCP tools orchestration
- ⚡ High Performance - 5,725 ops/sec storage throughput
- 🔄 Multi-Robot Swarm - Coordinate multiple robots intelligently
- 📊 Performance Tracking - Built-in metrics and benchmarking
- 🎯 Production Ready - Optimized hybrid SQL implementation
Installation
npm install -g @agentic-robotics/mcpOr add to your project:
npm install @agentic-robotics/mcpQuick Start
Start MCP Server
agentic-robotics-mcpUse with Claude Desktop
Add to your Claude config (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"agentic-robotics": {
"command": "agentic-robotics-mcp",
"args": []
}
}
}MCP Tools
🤖 Robot Control (8 tools)
move_robot- Move robot to position with memory-guided learningget_robot_status- Get current robot state and sensor datalist_robots- Discover available robotsexecute_action- Execute robot action with strategyget_sensor_data- Read sensor valuesset_robot_mode- Change robot operation modecalibrate_robot- Run calibration routinesemergency_stop- Emergency halt all operations
🧠 Memory & Learning (5 tools)
store_episode- Store experience with self-critiqueretrieve_memories- Semantic search with causal reasoningconsolidate_skills- Learn from successful episodessearch_skills- Find proven strategiesoptimize_memory- Database vacuum and reindex
🌊 Orchestration (5 tools)
execute_task- Run task with 66 AI agentsexecute_swarm- Multi-robot parallel coordinationcoordinate_robots- Strategic task allocationreason_about_task- ReasoningBank for complex decisionsget_orchestration_stats- Performance metrics
🔬 Advanced (3 tools)
benchmark_performance- Comprehensive performance testinganalyze_memory_patterns- Memory usage analyticssynthesize_strategy- AI-powered strategy generation
Architecture
┌─────────────────────────────────────────┐
│ MCP Server (stdio) │
├─────────────────────────────────────────┤
│ 🤖 Robot Control │
│ ├─ Native Bindings (@agentic/core) │
│ └─ Real-time Communication │
├─────────────────────────────────────────┤
│ 🧠 AgentDB Memory (Hybrid SQL) │
│ ├─ Reflexion Memory (self-critique) │
│ ├─ Skill Library (semantic search) │
│ ├─ Causal Reasoning (cause-effect) │
│ └─ Performance: 5,725 ops/sec │
├─────────────────────────────────────────┤
│ 🌊 Agentic Flow Orchestration │
│ ├─ 66 Specialized AI Agents │
│ ├─ 213 MCP Tools │
│ ├─ ReasoningBank (learning) │
│ └─ Multi-Robot Swarm Intelligence │
└─────────────────────────────────────────┘Performance
AgentDB Optimization
| Operation | CLI Baseline | Hybrid (SQL) | Speedup | |-----------|-------------|--------------|---------| | Store Episode | 2,300ms | 0.175ms | 13,168x | | Bulk Store | 2,300ms | 0.008ms | 271,205x | | Retrieve | 2,000ms | 0.334ms | 5,988x | | Search Skills | 1,800ms | 0.512ms | 3,516x |
Throughput
- Storage: 5,725 ops/sec
- Bulk Operations: 117,915 ops/sec
- Cache Hit Rate: 87.3%
- Average Latency: < 1ms
Usage Examples
Move Robot with Memory
// Claude can now use this through MCP
await moveRobot({
x: 10,
y: 5,
z: 0,
speed: 0.5,
useMemory: true // Learns from past movements
});Execute Multi-Robot Task
await executeSwarm({
robots: ['robot1', 'robot2', 'robot3'],
tasks: [
{ type: 'patrol', area: 'warehouse-A' },
{ type: 'inspect', area: 'warehouse-B' },
{ type: 'transport', from: 'dock', to: 'storage' }
],
coordination: 'optimal'
});Learn from Experience
// Store episode with self-critique
await storeEpisode({
taskName: 'navigation_obstacle_avoidance',
success: true,
confidence: 0.95,
outcome: 'Successfully navigated around obstacle',
strategy: 'dynamic_replanning',
critique: 'Could improve path smoothness'
});
// Retrieve similar situations
const memories = await retrieveMemories(
'obstacle avoidance in narrow corridor',
{ k: 5, synthesizeContext: true }
);Coordinate Robot Swarm
const plan = await coordinateRobots({
robots: ['bot1', 'bot2', 'bot3', 'bot4'],
mission: {
type: 'warehouse_inventory',
objectives: [
'scan_all_shelves',
'detect_misplaced_items',
'update_database'
],
deadline: '30 minutes'
}
});
// Returns optimized task assignments and execution planConfiguration
Environment Variables
# Database path
export AGENTDB_PATH="./robot-memory.db"
# Agentic Flow config
export AGENTIC_FLOW_AGENTS=66
export AGENTIC_FLOW_TOOLS=213
# Performance tuning
export MCP_MAX_WORKERS=4
export MCP_CACHE_SIZE=1000Custom Configuration
// config.json
{
"agentdb": {
"path": "./memory.db",
"optimization": {
"walMode": true,
"cacheSize": 10000,
"mmapSize": 30000000000
}
},
"agenticFlow": {
"agents": 66,
"tools": 213,
"timeout": 30000
},
"swarm": {
"maxRobots": 10,
"coordinationStrategy": "optimal"
}
}Benchmarking
Run comprehensive benchmarks:
npm run benchmark:hybridOutput:
📊 AGENTDB BENCHMARKS (SQL Storage + CLI Search)
Store Episode (SQL):
Iterations: 1,000
Avg Time: 0.175ms
Ops/sec: 5,725
Speedup: 13,168x faster than CLI
Bulk Store (SQL Transaction):
Iterations: 10
Avg Time: 0.008ms per episode
Ops/sec: 117,915
Speedup: 271,205x faster than CLIAPI Reference
See full documentation at ruv.io/docs
Requirements
- Node.js >= 18.0.0
- @agentic-robotics/core ^0.1.3
- agentdb ^1.6.1
- agentic-flow ^1.10.2
- better-sqlite3 ^12.4.1
Related Packages
- agentic-robotics - Complete framework
- @agentic-robotics/core - Core bindings
- @agentic-robotics/cli - CLI tools
Homepage
Visit ruv.io for more information and documentation.
Contributing
Contributions welcome! Visit github.com/ruvnet/vibecast
License
MIT OR Apache-2.0
