@agentick/apple
v0.9.3
Published
Apple Foundation Models adapter for Agentick — on-device inference via macOS 26+
Readme
@agentick/apple
Apple on-device AI for Agentick — inference and embeddings via Foundation Models and NaturalLanguage, running entirely on your machine.
Features
- On-device inference — No API keys, no external requests, zero cost
- On-device embeddings — 512-dimensional vector embeddings via
NLContextualEmbedding - Privacy-first — All processing happens locally with Apple Intelligence
- Structured output — JSON schema-constrained generation via
DynamicGenerationSchema - Streaming — Real-time token-by-token responses
- Auto-compiled binary — Swift bridge compiles automatically on install
Requirements
- macOS 26+ (Tahoe or later)
- Apple Intelligence enabled (Settings > Apple Intelligence & Siri)
- Xcode (for Swift compilation during install)
Installation
npm install @agentick/apple
# or
pnpm add @agentick/appleThe postinstall script compiles the Swift bridge binary. If compilation fails (e.g., on non-macOS or without Xcode), the package still installs but won't be functional until the binary is available.
Quick Start
Text Generation
import { apple } from '@agentick/apple';
import { createApp } from 'agentick';
const Agent = () => (
<>
<System>You are a helpful assistant.</System>
<Timeline />
</>
);
const app = createApp(Agent, { model: apple() });
const session = app.createSession();
const result = await session.send({ messages: [{ role: 'user', content: 'Hello!' }] });Embeddings
import { appleEmbedding } from "@agentick/apple";
const embed = appleEmbedding();
// Single text
const { embeddings, dimensions } = await embed("Hello world");
console.log(dimensions); // 512
console.log(embeddings[0].length); // 512
// Batch
const { embeddings } = await embed([
"machine learning and AI",
"deep neural networks",
"the cat sat on the mat",
]);
// embeddings → number[3][512]Structured Output
import { apple } from "@agentick/apple";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
const recipeSchema = z.object({
title: z.string().describe("Recipe name"),
calories: z.number().int().describe("Total calories"),
ingredients: z.string().describe("Comma-separated ingredients"),
steps: z.string().describe("Newline-separated steps"),
});
const result = await session.send({
messages: [{ role: "user", content: "Create a pasta recipe" }],
responseFormat: {
type: "json_schema",
schema: zodToJsonSchema(recipeSchema),
},
});
const recipe = JSON.parse(result.message.content[0].text);JSX Component
import { AppleModel } from "@agentick/apple";
const Agent = () => (
<>
<AppleModel />
<System>You are a helpful assistant.</System>
<Timeline />
</>
);API
apple(config?)
Factory function returning a ModelClass for text generation.
| Option | Type | Default | Description |
| ------------ | -------- | ----------------------- | --------------------------- |
| bridgePath | string | auto-detected | Path to Swift bridge binary |
| model | string | "apple-foundation-3b" | Model identifier |
Returns a ModelClass usable with createApp, as JSX, or for direct execution.
AppleModel
JSX component wrapping apple() for declarative model configuration. Accepts the same props as apple().
appleEmbedding(config?)
Factory function returning a callable embedding function.
| Option | Type | Default | Description |
| ------------ | ----------------- | ------------- | ---------------------------------------------------- |
| bridgePath | string | auto-detected | Path to Swift bridge binary |
| script | EmbeddingScript | "latin" | Script model to load (see below) |
| language | string | — | BCP-47 code (e.g. "en", "fr") for better results |
Returns an AppleEmbeddingFunction:
const embed = appleEmbedding({ script: "latin" });
// Call with a single string or array
const result = await embed("Hello world");
const batch = await embed(["Hello", "World"]);
// Result shape
result.embeddings; // number[][] — one vector per input text
result.dimensions; // number — vector dimensionality (512)
result.model; // "apple-contextual-embedding"
result.script; // "latin"Script Models
Each script model covers a group of languages. You pick the script, not individual languages:
| Script | Languages |
| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| "latin" (default) | English, French, German, Spanish, Portuguese, Italian, Dutch, Swedish, Danish, Norwegian, Finnish, Polish, Czech, Hungarian, Romanian, Slovak, Croatian, Indonesian, Turkish, Vietnamese |
| "cyrillic" | Russian, Ukrainian, Bulgarian, Kazakh |
| "cjk" | Chinese, Japanese, Korean |
| "indic" | Hindi, Marathi, Bangla, Urdu, Punjabi, Gujarati, Tamil, Telugu, Kannada, Malayalam |
| "thai" | Thai |
| "arabic" | Arabic |
The optional language parameter (BCP-47 code like "en", "ja", "ru") refines results when you know the input language.
Capabilities
| Feature | Supported |
| --------------------------------- | --------------------------------------- |
| Text generation | Yes |
| Streaming | Yes |
| Structured output (json_schema) | Yes |
| On-device embeddings | Yes — 512-dim via NLContextualEmbedding |
| Tool calling | Not yet — see Roadmap |
| Vision/multimodal | No |
| Context window | 4096 tokens |
Structured Output
Uses Apple's DynamicGenerationSchema to enforce constraints at generation time — the model cannot produce invalid output.
Supported types: string, integer, number, boolean, nested objects. Arrays not yet supported in bridge.
Architecture
Node.js (agentick)
│
├── Text generation ──▶ stdin JSON ──▶ Swift Bridge ──▶ FoundationModels
│ │ │
│ ◀── stdout JSON/NDJSON ──┘
│
└── Embeddings ──▶ stdin JSON ──▶ Swift Bridge ──▶ NLContextualEmbedding
│ │
◀── stdout JSON ────┘Single Swift binary (apple-fm-bridge) handles both operations, routed by the operation field:
"generate"(default) — text generation viaLanguageModelSession"embed"— vector embeddings viaNLContextualEmbedding
Manual Compilation
cd node_modules/@agentick/apple
swiftc -parse-as-library -framework FoundationModels -framework NaturalLanguage -O inference.swift -o bin/apple-fm-bridgeRoadmap
Tool Calling
Apple Foundation Models support tool calling via the Tool protocol — the model can autonomously call Swift functions and use results in its response. Our adapter currently doesn't support this because Apple's tool loop runs internally within session.respond().
The path forward is a bidirectional bridge protocol: proxy Tool structs in Swift that write tool_call messages to stdout and read tool_result responses from stdin, letting agentick's tool executors handle execution while Apple's framework manages the model loop.
Embedding Improvements
- Cosine similarity utility functions
- Batch performance optimization (keep model loaded across calls)
- Configurable pooling strategies (mean, CLS, max)
Limitations
- macOS 26+ only — Foundation Models framework isn't available on earlier versions
- Apple Intelligence required — Model must be downloaded and enabled in System Settings
- Limited context — 4096 token window
- No vision input —
LanguageModelSessionAPI is text-only - Array schemas unsupported —
DynamicGenerationSchemadoesn't support dynamic array generation
Troubleshooting
"Model not available" error
- Open System Settings > Apple Intelligence & Siri
- Enable Apple Intelligence
- Wait for model download (may take several minutes)
Compilation fails on install
xcode-select --install"Embedding model assets not downloaded"
The NLContextualEmbedding model assets may need to be downloaded. Ensure Apple Intelligence is enabled and the device has internet access for the initial download.
Guardrail violations
Apple's on-device models include safety guardrails. Requests for harmful or repetitive content may be rejected — this is expected and cannot be disabled.
License
MIT
Related
- agentick — Main framework
- @agentick/openai — OpenAI adapter
- @agentick/google — Google Gemini adapter
