npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@ai-coustics/aic-sdk-wasm

v0.14.1

Published

WebAssembly wrapper for the ai-coustics Speech Enhancement SDK. This package allows you to run ai-coustics models directly in the browser.

Downloads

87

Readme

aic-sdk-wasm - WebAssembly Bindings for ai-coustics SDK

WebAssembly wrapper for the ai-coustics Speech Enhancement SDK. This package allows you to run ai-coustics models directly in the browser.

For comprehensive documentation, visit docs.ai-coustics.com.

[!NOTE] This SDK requires a license key. Generate your key at developers.ai-coustics.io.

Installation

npm install @ai-coustics/aic-sdk-wasm

Quick Start

import init, { Model, Processor } from "@ai-coustics/aic-sdk-wasm";

// Initialize the WASM module
await init();

// Load a model
const response = await fetch("https://artifacts.ai-coustics.io/models/quail-vf-l-16khz/v1/quail_vf_l_16khz_jc5pk1aa_v17.aicmodel");
const modelBytes = new Uint8Array(await response.arrayBuffer());
const model = Model.fromBytes(modelBytes);

// Get optimal configuration
const sampleRate = model.getOptimalSampleRate();
const numFrames = model.getOptimalNumFrames(sampleRate);
const numChannels = 1;

// Create and initialize processor
const processor = new Processor(model, "YOUR_LICENSE_KEY");
processor.initialize(sampleRate, numChannels, numFrames, false);

// Process audio (Float32Array)
const audioBuffer = new Float32Array(numChannels * numFrames);
// ... fill buffer with audio data ...
processor.processInterleaved(audioBuffer);

Usage

SDK Information

import { getVersion, getCompatibleModelVersion } from "@ai-coustics/aic-sdk-wasm";

// Get SDK version
console.log(`SDK version: ${getVersion()}`);

// Get compatible model version
console.log(`Compatible model version: ${getCompatibleModelVersion()}`);

Loading Models

Download models and find available IDs at artifacts.ai-coustics.io.

Since browsers cannot access the file system directly, you must load the model file as a byte array (Uint8Array).

// Fetch the .aicmodel file
const response = await fetch("https://artifacts.ai-coustics.io/models/quail-vf-l-16khz/v1/quail_vf_l_16khz_jc5pk1aa_v17.aicmodel");
const bytes = new Uint8Array(await response.arrayBuffer());

// Create Model instance
const model = Model.fromBytes(bytes);

Model Information

// Get model ID
const modelId = model.getId();

// Get optimal sample rate for the model
const optimalRate = model.getOptimalSampleRate();

// Get optimal frame count for a specific sample rate
const optimalFrames = model.getOptimalNumFrames(48000);

Configuring the Processor

// Create processor
const processor = new Processor(model, "YOUR_LICENSE_KEY");

// Initialize with audio settings
processor.initialize(
  sampleRate,           // Sample rate in Hz (8000 - 192000)
  numChannels,          // Number of audio channels
  numFrames,            // Samples per channel per processing call
  allowVariableFrames   // Allow variable frame sizes (default: false)
);

Processing Audio

// Interleaved audio: [L0, R0, L1, R1, ...]
const buffer = new Float32Array(numChannels * numFrames);
processor.processInterleaved(buffer);

// Sequential audio: [L0, L1, ..., R0, R1, ...]
processor.processSequential(buffer);

// Planar audio: Not typically used in JS/WASM context as cleanly as native, 
// but supported if you pack data into a single Float32Array
// processor.processPlanar(buffer, numChannels);

Processor Context

import { ProcessorParameter } from "@ai-coustics/aic-sdk-wasm";

// Get processor context
const procCtx = processor.getProcessorContext();

// Get output delay in samples
const delay = procCtx.getOutputDelay();

// Reset processor state (clears internal buffers)
procCtx.reset();

// Set enhancement parameters
procCtx.setParameter(ProcessorParameter.EnhancementLevel, 0.8);
procCtx.setParameter(ProcessorParameter.VoiceGain, 1.5);
procCtx.setParameter(ProcessorParameter.Bypass, 0.0);

// Get parameter values
const level = procCtx.getParameter(ProcessorParameter.EnhancementLevel);
console.log(`Enhancement level: ${level}`);

Voice Activity Detection (VAD)

import { VadParameter } from "@ai-coustics/aic-sdk-wasm";

// Get VAD context from processor
const vadCtx = processor.getVadContext();

// Configure VAD parameters
vadCtx.setParameter(VadParameter.Sensitivity, 6.0);
vadCtx.setParameter(VadParameter.SpeechHoldDuration, 0.05);
vadCtx.setParameter(VadParameter.MinimumSpeechDuration, 0.0);

// Get parameter values
const sensitivity = vadCtx.getParameter(VadParameter.Sensitivity);
console.log(`VAD sensitivity: ${sensitivity}`);

// Check for speech (after processing audio through the processor)
if (vadCtx.isSpeechDetected()) {
  console.log("Speech detected!");
}

Memory Management

WebAssembly memory should be manually freed when objects are no longer needed. This does not need to be done if the browser supports weak references.

// When finished with the VAD
vadCtx.free();

// When finished with the processor
processor.free();

// When finished with the model (and you won't create new processors from it)
model.free();

Examples

See the examples/ directory for complete working examples, including:

  • index.html: Full interactive demo with file input, parameter controls, and real-time VAD visualization.
  • benchmark.html: Performance benchmark tool to measure processing latency.
  • basic.html: Demonstrates all core SDK APIs.

Documentation