@aigne/example-workflow-concurrency
v1.16.85
Published
A demonstration of using AIGNE Framework to build a concurrency workflow
Downloads
3,651
Readme
Workflow Concurrency Demo
This is a demonstration of using AIGNE Framework to build a concurrency workflow. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.
flowchart LR
in(In)
out(Out)
featureExtractor(Feature Extractor)
audienceAnalyzer(Audience Analyzer)
aggregator(Aggregator)
in --> featureExtractor --> aggregator
in --> audienceAnalyzer --> aggregator
aggregator --> out
classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;
class in inputOutput
class out inputOutput
class featureExtractor processing
class audienceAnalyzer processing
class aggregator processingPrerequisites
- Node.js (>=20.0) and npm installed on your machine
- An OpenAI API key for interacting with OpenAI's services
- Optional dependencies (if running the example from source code):
Quick Start (No Installation Required)
export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key
# Run in one-shot mode (default)
npx -y @aigne/example-workflow-concurrency
# Run in interactive chat mode
npx -y @aigne/example-workflow-concurrency --chat
# Use pipeline input
echo "Analyze product: Smart home assistant with voice control and AI learning capabilities" | npx -y @aigne/example-workflow-concurrencyInstallation
Clone the Repository
git clone https://github.com/AIGNE-io/aigne-frameworkInstall Dependencies
cd aigne-framework/examples/workflow-concurrency
pnpm installSetup Environment Variables
Setup your OpenAI API key in the .env.local file:
OPENAI_API_KEY="" # Set your OpenAI API key hereUsing Different Models
You can use different AI models by setting the MODEL environment variable along with the corresponding API key. The framework supports multiple providers:
- OpenAI:
MODEL="openai:gpt-4.1"withOPENAI_API_KEY - Anthropic:
MODEL="anthropic:claude-3-7-sonnet-latest"withANTHROPIC_API_KEY - Google Gemini:
MODEL="gemini:gemini-2.0-flash"withGEMINI_API_KEY - AWS Bedrock:
MODEL="bedrock:us.amazon.nova-premier-v1:0"with AWS credentials - DeepSeek:
MODEL="deepseek:deepseek-chat"withDEEPSEEK_API_KEY - OpenRouter:
MODEL="openrouter:openai/gpt-4o"withOPEN_ROUTER_API_KEY - xAI:
MODEL="xai:grok-2-latest"withXAI_API_KEY - Ollama:
MODEL="ollama:llama3.2"withOLLAMA_DEFAULT_BASE_URL
For detailed configuration examples, please refer to the .env.local.example file in this directory.
Run the Example
pnpm start # Run in one-shot mode (default)
# Run in interactive chat mode
pnpm start -- --chat
# Use pipeline input
echo "Analyze product: Smart home assistant with voice control and AI learning capabilities" | pnpm startRun Options
The example supports the following command-line parameters:
| Parameter | Description | Default |
|-----------|-------------|---------|
| --chat | Run in interactive chat mode | Disabled (one-shot mode) |
| --model <provider[:model]> | AI model to use in format 'provider[:model]' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini' | openai |
| --temperature <value> | Temperature for model generation | Provider default |
| --top-p <value> | Top-p sampling value | Provider default |
| --presence-penalty <value> | Presence penalty value | Provider default |
| --frequency-penalty <value> | Frequency penalty value | Provider default |
| --log-level <level> | Set logging level (ERROR, WARN, INFO, DEBUG, TRACE) | INFO |
| --input, -i <input> | Specify input directly | None |
Examples
# Run in chat mode (interactive)
pnpm start -- --chat
# Set logging level
pnpm start -- --log-level DEBUG
# Use pipeline input
echo "Analyze product: Smart home assistant with voice control and AI learning capabilities" | pnpm startExample
The following example demonstrates how to build a concurrency workflow:
import { AIAgent, AIGNE, ProcessMode, TeamAgent } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";
const { OPENAI_API_KEY } = process.env;
const model = new OpenAIChatModel({
apiKey: OPENAI_API_KEY,
});
const featureExtractor = AIAgent.from({
instructions: `\
You are a product analyst. Extract and summarize the key features of the product.
Product description:
{{product}}`,
outputKey: "features",
});
const audienceAnalyzer = AIAgent.from({
instructions: `\
You are a market researcher. Identify the target audience for the product.
Product description:
{{product}}`,
outputKey: "audience",
});
const aigne = new AIGNE({ model });
// 创建一个 TeamAgent 来处理并行工作流
const teamAgent = TeamAgent.from({
skills: [featureExtractor, audienceAnalyzer],
mode: ProcessMode.parallel,
});
const result = await aigne.invoke(teamAgent, {
product: "AIGNE is a No-code Generative AI Apps Engine",
});
console.log(result);
// Output:
// {
// features: "**Product Name:** AIGNE\n\n**Product Type:** No-code Generative AI Apps Engine\n\n...",
// audience: "**Small to Medium Enterprises (SMEs)**: \n - Businesses that may not have extensive IT resources or budget for app development but are looking to leverage AI to enhance their operations or customer engagement.\n\n...",
// }License
This project is licensed under the MIT License.
