npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@anarchy_zzh/goboard

v0.1.1

Published

A Go board data type.

Readme

@anarchy_zzh/goboard

A Go board data type.

Installation

Use npm to install:

$ npm install @anarchy_zzh/goboard

Usage

const goBoard = require('@anarchy_zzh/goboard')
let board = new Board([
    [ 0, 0, 0,-1,-1,-1, 1, 0, 1, 1,-1,-1, 0,-1, 0,-1,-1, 1, 0],
    [ 0, 0,-1, 0,-1, 1, 1, 1, 0, 1,-1, 0,-1,-1,-1,-1, 1, 1, 0],
    [ 0, 0,-1,-1,-1, 1, 1, 0, 0, 1, 1,-1,-1, 1,-1, 1, 0, 1, 0],
    [ 0, 0, 0, 0,-1,-1, 1, 0, 1,-1, 1, 1, 1, 1, 1, 0, 1, 0, 0],
    [ 0, 0, 0, 0,-1, 0,-1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0],
    [ 0, 0,-1, 0, 0,-1,-1, 1, 0,-1,-1, 1,-1,-1, 0, 1, 0, 0, 1],
    [ 0, 0, 0,-1,-1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1, 1, 1, 1],
    [ 0, 0,-1, 1, 1, 0, 1,-1,-1, 1, 0, 1,-1, 0, 1,-1,-1,-1, 1],
    [ 0, 0,-1,-1, 1, 1, 1, 0,-1, 1,-1,-1, 0,-1,-1, 1, 1, 1, 1],
    [ 0, 0,-1, 1, 1,-1,-1,-1,-1, 1, 1, 1,-1,-1,-1,-1, 1,-1,-1],
    [-1,-1,-1,-1, 1, 1, 1,-1, 0,-1, 1,-1,-1, 0,-1, 1, 1,-1, 0],
    [-1, 1,-1, 0,-1,-1,-1,-1,-1,-1, 1,-1, 0,-1,-1, 1,-1, 0,-1],
    [ 1, 1, 1, 1,-1, 1, 1, 1,-1, 1, 0, 1,-1, 0,-1, 1,-1,-1, 0],
    [ 0, 1,-1, 1, 1,-1,-1, 1,-1, 1, 1, 1,-1, 1,-1, 1, 1,-1, 1],
    [ 0, 0,-1, 1, 0, 0, 1, 1,-1,-1, 0, 1,-1, 1,-1, 1,-1, 0,-1],
    [ 0, 0, 1, 0, 1, 0, 1, 1, 1,-1,-1, 1,-1,-1, 1,-1,-1,-1, 0],
    [ 0, 0, 0, 0, 1, 1, 0, 1,-1, 0,-1,-1, 1, 1, 1, 1,-1,-1,-1],
    [ 0, 0, 1, 1,-1, 1, 1,-1, 0,-1,-1, 1, 1, 1, 1, 0, 1,-1, 1],
    [ 0, 0, 0, 1,-1,-1,-1,-1,-1, 0,-1,-1, 1, 1, 0, 1, 1, 1, 0]
])
let move = board.putChess([9, 4], 1)

API

board

The board arrangement is represented by an array of arrays. Each of those subarrays represent one row, all containing the same number of integers. -1 denotes a white stone, 1 a black stone, and 0 represents an empty vertex.

Example

[[ 0, 0, 1, 0,-1,-1, 1, 0, 0],
 [ 1, 0, 1,-1,-1, 1, 1, 1, 0],
 [ 0, 0, 1,-1, 0, 1,-1,-1, 0],
 [ 1, 1, 1,-1,-1,-1, 1,-1, 0],
 [ 1,-1, 1, 1,-1, 1, 1, 1, 0],
 [-1,-1,-1,-1,-1, 1, 0, 0, 0],
 [ 0,-1,-1, 0,-1, 1, 1, 1, 1],
 [ 0, 0, 0, 0, 0,-1,-1,-1, 1],
 [ 0, 0, 0, 0, 0, 0, 0,-1, 0]]

Vertex

Board positions are represented by a vertex, i.e. an array of the form [x, y] where x and y are non-negative integers, zero-based coordinates. [0, 0] denotes the upper left position of the board.


class goBoard

Constructors

new Board(size, [signMap])

Properties

board.board

<BoardArr> - The underlying sign map of the board.

Stone Arrangement Functions

board.get(vertex)

Returns the sign at the given vertex.

board.set(vertex, sign)
  • vertex <Vertex>
  • sign <Integer> - One of -1, 0, or 1

Sets the sign at the given vertex. No validity checks will be made. This function mutates the board and returns this to enable chaining.

board.has(vertex)

Returns a boolean whether the given vertex is valid or can be found on the board.

board.putChess(vertex, sign)
  • sign <Integer> - One of -1, 0, or 1
  • vertex <Vertex>

Returns a new board instance that represents the board state after the player who corresponds to the given sign makes a move at vertex. The capture count will also be updated correctly. If board is valid then the new returned board instance will also be valid. This function will not mutate board. If sign is 0 or vertex not valid, this function will be equivalent to clone().