npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@aniruddha1806/boxplot-chart

v1.0.2

Published

A responsive and customizable Box Plot component for React

Downloads

15

Readme

React Box Plot Chart

A powerful, customizable box plot chart component for React applications with TypeScript support. Perfect for visualizing statistical distributions, quartiles, outliers, and data spread across categories.

Installation

npm install @aniruddha1806/boxplot-chart

Features

  • 📊 Interactive box plot charts with statistical calculations
  • 📈 Automatic quartile, median, and outlier detection
  • 🎨 Customizable colors and styling for all chart elements
  • 📱 Responsive design with automatic scaling
  • 🖱️ Interactive tooltips with detailed statistics
  • 🎯 Outlier visualization with toggle option
  • 📏 Customizable axis labels and titles
  • 🎨 CSS class support for advanced styling
  • 📝 TypeScript support with full type definitions
  • ♿ Accessibility features
  • 🪶 Zero dependencies for chart rendering

Quick Start

Basic Box Plot

import BoxPlot from '@aniruddha1806/boxplot-chart';

function App() {
  const data = {
    'Group A': [12, 15, 18, 20, 22, 25, 28, 30, 35, 40],
    'Group B': [8, 12, 16, 18, 20, 24, 26, 28, 32, 38],
    'Group C': [10, 14, 17, 19, 21, 23, 27, 29, 33, 36]
  };

  return (
    <BoxPlot
      data={data}
      title="Sample Box Plot"
      xAxisLabel="Groups"
      yAxisLabel="Values"
      width="100%"
      height={400}
    />
  );
}

Props

Core Props

| Prop | Type | Default | Description | |------|------|---------|-------------| | data | Dataset \| string | {} | Chart data as object or CSV string | | width | number \| string | "100%" | Chart width | | height | number \| string | 400 | Chart height | | title | string | "Box Plot" | Chart title | | xAxisLabel | string | "" | X-axis label | | yAxisLabel | string | "" | Y-axis label |

Styling Props

| Prop | Type | Default | Description | |------|------|---------|-------------| | className | string | "" | CSS class for container | | boxClassName | string | "" | CSS class for box elements | | medianClassName | string | "" | CSS class for median lines | | whiskerClassName | string | "" | CSS class for whiskers | | outlierClassName | string | "" | CSS class for outliers |

Color Props

| Prop | Type | Default | Description | |------|------|---------|-------------| | colors.box | string | "#3b82f6" | Box fill color | | colors.median | string | "#1e40af" | Median line color | | colors.whisker | string | "#93c5fd" | Whisker color | | colors.outlier | string | "#ef4444" | Outlier point color |

Feature Props

| Prop | Type | Default | Description | |------|------|---------|-------------| | showOutliers | boolean | true | Display outlier points | | showTooltip | boolean | true | Enable interactive tooltips |

Data Types

type DataPoint = number;
type Category = string;
type Dataset = Record<Category, DataPoint[]>;

interface BoxPlotStats {
  min: number;
  q1: number;
  median: number;
  q3: number;
  max: number;
  outliers: number[];
}

Examples

Basic Statistical Analysis

Simple box plot for comparing distributions:

import BoxPlot from '@aniruddha1806/boxplot-chart';

function StatisticalAnalysisExample() {
  const testScores = {
    'Math': [78, 82, 85, 88, 90, 92, 95, 98, 100, 85, 87, 89],
    'Science': [75, 80, 83, 86, 88, 91, 94, 96, 99, 82, 84, 87],
    'English': [80, 83, 86, 89, 91, 93, 96, 98, 100, 88, 90, 92],
    'History': [72, 76, 79, 82, 85, 88, 91, 94, 97, 80, 83, 86]
  };

  return (
    <div style={{ padding: '20px' }}>
      <h2>Student Test Scores by Subject</h2>
      <BoxPlot
        data={testScores}
        title="Test Score Distribution"
        xAxisLabel="Subjects"
        yAxisLabel="Score"
        width="100%"
        height={500}
        colors={{
          box: '#10b981',
          median: '#059669',
          whisker: '#6ee7b7',
          outlier: '#f59e0b'
        }}
      />
    </div>
  );
}

Custom Styled Box Plot

Apply custom styling with CSS classes:

import BoxPlot from '@aniruddha1806/boxplot-chart';
import './custom-boxplot.css'; // Your custom CSS

function CustomStyledExample() {
  const performanceData = {
    'Q1': [85, 88, 92, 95, 98, 90, 87, 93, 96, 89],
    'Q2': [88, 91, 95, 98, 101, 93, 90, 96, 99, 92],
    'Q3': [90, 93, 97, 100, 103, 95, 92, 98, 101, 94],
    'Q4': [92, 95, 99, 102, 105, 97, 94, 100, 103, 96]
  };

  return (
    <BoxPlot
      data={performanceData}
      title="Quarterly Performance Metrics"
      xAxisLabel="Quarters"
      yAxisLabel="Performance Score"
      className="custom-boxplot"
      boxClassName="custom-box"
      medianClassName="custom-median"
      whiskerClassName="custom-whisker"
      outlierClassName="custom-outlier"
      width="100%"
      height={450}
    />
  );
}

CSS file (custom-boxplot.css):

.custom-boxplot {
  background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
  border-radius: 12px;
  box-shadow: 0 8px 32px rgba(0,0,0,0.1);
}

.custom-boxplot .chart-title {
  color: white;
  font-size: 20px;
  font-weight: bold;
}

.custom-boxplot .axis-label {
  fill: white;
  font-weight: bold;
}

.custom-boxplot .tick text {
  fill: white;
}

.custom-box {
  stroke-width: 2;
  filter: drop-shadow(0 2px 4px rgba(0,0,0,0.2));
}

.custom-median {
  stroke-width: 3;
}

.custom-whisker {
  stroke-width: 2;
  stroke-dasharray: 5,5;
}

.custom-outlier {
  stroke: white;
  stroke-width: 2;
  filter: drop-shadow(0 1px 2px rgba(0,0,0,0.3));
}

.custom-outlier:hover {
  r: 6;
  transition: r 0.2s ease;
}

TypeScript Usage

The component provides full TypeScript support:

import BoxPlot, { BoxPlotProps, BoxPlotStats, Dataset } from '@aniruddha1806/boxplot-chart';
import { useState, useEffect } from 'react';

interface AnalyticsData {
  categories: string[];
  values: number[][];
}

interface ChartConfig {
  title: string;
  colors: {
    box: string;
    median: string;
    whisker: string;
    outlier: string;
  };
}

const AnalyticsChart: React.FC = () => {
  const [data, setData] = useState<Dataset>({});
  const [stats, setStats] = useState<Record<string, BoxPlotStats>>({});

  const calculateStats = (dataset: Dataset): Record<string, BoxPlotStats> => {
    const result: Record<string, BoxPlotStats> = {};
    
    Object.entries(dataset).forEach(([category, values]) => {
      const sorted = [...values].sort((a, b) => a - b);
      const q1 = sorted[Math.floor(sorted.length * 0.25)];
      const median = sorted[Math.floor(sorted.length * 0.5)];
      const q3 = sorted[Math.floor(sorted.length * 0.75)];
      const iqr = q3 - q1;
      
      const outliers = sorted.filter(v => 
        v < q1 - 1.5 * iqr || v > q3 + 1.5 * iqr
      );
      
      result[category] = {
        min: Math.min(...sorted),
        q1,
        median,
        q3,
        max: Math.max(...sorted),
        outliers
      };
    });
    
    return result;
  };

  useEffect(() => {
    // Fetch or generate data
    const sampleData: Dataset = {
      'Category A': [10, 15, 20, 25, 30],
      'Category B': [12, 18, 22, 28, 32],
      'Category C': [8, 14, 19, 24, 29]
    };
    
    setData(sampleData);
    setStats(calculateStats(sampleData));
  }, []);

  const chartConfig: ChartConfig = {
    title: 'Statistical Analysis',
    colors: {
      box: '#3b82f6',
      median: '#1e40af',
      whisker: '#93c5fd',
      outlier: '#ef4444'
    }
  };

  const boxPlotProps: BoxPlotProps = {
    data,
    title: chartConfig.title,
    colors: chartConfig.colors,
    width: '100%',
    height: 400,
    showTooltip: true,
    showOutliers: true,
    xAxisLabel: 'Categories',
    yAxisLabel: 'Values'
  };

  return (
    <div>
      <BoxPlot {...boxPlotProps} />
      <div>
        <h3>Statistics Summary:</h3>
        {Object.entries(stats).map(([category, stat]) => (
          <div key={category}>
            <h4>{category}</h4>
            <p>Median: {stat.median}, IQR: {stat.q3 - stat.q1}</p>
          </div>
        ))}
      </div>
    </div>
  );
};

Statistical Calculations

The component automatically calculates:

Quartiles

  • Q1 (25th percentile): First quartile
  • Q2 (50th percentile): Median
  • Q3 (75th percentile): Third quartile

Outlier Detection

  • Lower bound: Q1 - 1.5 × IQR
  • Upper bound: Q3 + 1.5 × IQR
  • Outliers: Values outside these bounds

Whiskers

  • Lower whisker: Minimum non-outlier value
  • Upper whisker: Maximum non-outlier value