npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@autonia/providers

v0.1.25

Published

Providers for AgentGraph

Readme

Section:1 AGX Data format

The following are the data structure of how responses will be stored by AGX Agent Framework

Text Responses

{
  "messages": [
    {
      "msg_id": "550e8400-e29b-41d4-a716-446655440000",
      "role": "assistant",
      "content": [{ "type": "text", "text": "Hello! How can I help you today?" }]
    }
  ],
  "usage": {
    "input_tokens": 492,
    "cache_creation_input_tokens": 0,
    "cache_read_input_tokens": 0,
    "output_tokens": 52,
    "reasoning_output_tokens": 0,
    "service_tier": "standard"
  },
  "request_params": {
    "model": "gpt-4o",
    "temperature": 0.7,
    "max_output_tokens": 150
  },
  "response_object": {
    "id": "resp_67ccd2bed1ec8190b14f964abc0542670bb6a6b452d3795b",
    "object": "response",
    "created_at": 1741476542,
    "status": "completed"
  }
}

JSON format / Structured Responses

{
  "messages": [
    {
      "msg_id": "550e8400-e29b-41d4-a716-446655440000",
      "role": "assistant",
      "content": [
        {
          "type": "json",
          "text": "{\"joke\":\"Why don't scientists trust atoms? Because they make up everything!\"}"
        }
      ]
    }
  ],
  "usage": {
    "input_tokens": 78,
    "cache_creation_input_tokens": 0,
    "cache_read_input_tokens": 0,
    "output_tokens": 23,
    "reasoning_output_tokens": 0,
    "service_tier": "standard"
  },
  "request_params": {
    "model": "gpt-4o",
    "text": {
      "format": {
        "type": "json_schema",
        "name": "schema",
        "strict": true,
        "schema": {
          "type": "object",
          "properties": {
            "joke": { "type": "string" }
          },
          "required": ["joke"],
          "additionalProperties": false
        }
      }
    }
  }
}

Image Responses

{
  "messages": [
    {
      "msg_id": "550e8400-e29b-41d4-a716-446655440000",
      "role": "assistant",
      "content": [
        {
          "type": "image",
          "image_url": ""
        }
      ]
    }
  ],
  "usage": {
    "input_tokens": 120,
    "cache_creation_input_tokens": 0,
    "cache_read_input_tokens": 0,
    "output_tokens": 0,
    "reasoning_output_tokens": 0,
    "service_tier": "standard"
  }
}

Vision Responses (Image Analysis)

{
  "messages": [
    {
      "msg_id": "550e8400-e29b-41d4-a716-446655440000",
      "role": "assistant",
      "content": [
        {
          "type": "text",
          "text": "This image shows a fast food receipt from a restaurant. The receipt includes items like tea and pizza with a total of $483.00."
        }
      ]
    }
  ],
  "usage": {
    "input_tokens": 437,
    "cache_creation_input_tokens": 0,
    "cache_read_input_tokens": 0,
    "output_tokens": 150,
    "reasoning_output_tokens": 0,
    "service_tier": "standard"
  }
}

Audio Transcription Responses

{
  "role": "user",
  "content": [
    {
      "type": "text",
      "text": "Hello, this is the transcribed content from the audio file."
    }
  ]
}

Tool Call Responses

{
  "messages": [
    {
      "msg_id": "550e8400-e29b-41d4-a716-446655440000",
      "role": "assistant",
      "content": [
        {
          "type": "tool_call",
          "name": "route",
          "call_id": "call_Wsc6HYmzz7tBq0UAWojI39cR",
          "arguments": "{\"next\":[\"receipt_uploader\"],\"instructions\":\"Process the uploaded receipt\",\"message_to_human\":\"Processing your receipt...\"}"
        }
      ]
    }
  ],
  "usage": {
    "input_tokens": 492,
    "cache_creation_input_tokens": 0,
    "cache_read_input_tokens": 0,
    "output_tokens": 52,
    "reasoning_output_tokens": 0,
    "service_tier": "standard"
  }
}

Streaming Response Format

Streaming responses include additional metadata for real-time processing:

{
  "eventName": "stream.text.delta",
  "indexes": {
    "outputIndex": 0,
    "contentIndex": 0
  },
  "response": {
    "messages": [
      {
        "msg_id": "550e8400-e29b-41d4-a716-446655440000",
        "role": "assistant",
        "content": [{ "type": "text", "text": "Hello" }]
      }
    ]
  }
}

Section 2: AGX Request Parameters to Providers (OpenAI, Claude)

These are parameters that are provided as input to the Provider Class (OpenAI, Claude), which should be converted to request format accepted by the provider.

Text Completion Request

{
  "type": "text",
  "messages": [
    {
      "role": "user",
      "content": [{ "type": "text", "text": "Hello, how are you?" }]
    },
    {
      "role": "assistant",
      "content": [{ "type": "text", "text": "I'm doing well, thank you!" }]
    }
  ],
  "model": "gpt-4o",
  "temperature": 0.7,
  "maxTokens": 150,
  "stream": false
}

Vision Request (Image Analysis)

{
  "type": "vision",
  "messages": [
    {
      "role": "user",
      "content": [{ "type": "text", "text": "What do you see in this image?" }]
    }
  ],
  "files": [
    {
      "url": "https://example.com/image.jpg",
      "base64": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAAB...",
      "originalname": "receipt.jpg",
      "mimetype": "image/jpeg"
    }
  ],
  "model": "gpt-4o"
}

Structured Output Request

{
  "type": "json",
  "schema": {
    "type": "object",
    "properties": {
      "joke": { "type": "string" },
      "category": { "type": "string" }
    },
    "required": ["joke", "category"],
    "additionalProperties": false
  },
  "messages": [
    {
      "role": "user",
      "content": [{ "type": "text", "text": "Tell me a programming joke" }]
    }
  ],
  "model": "gpt-4o"
}

Tool/Function Calling Request

{
  "type": "text",
  "messages": [
    {
      "role": "user",
      "content": [{ "type": "text", "text": "Route this expense receipt to the appropriate processor" }]
    }
  ],
  "tools": [
    {
      "type": "function",
      "name": "route",
      "description": "Route tasks to appropriate agents",
      "parameters": {
        "type": "object",
        "properties": {
          "next": {
            "type": "array",
            "items": { "type": "string" },
            "description": "Next agents to process"
          },
          "instructions": {
            "type": "string",
            "description": "Instructions for the agents"
          }
        },
        "required": ["next", "instructions"]
      }
    }
  ],
  "model": "gpt-4o"
}

Embedding Request

{
  "input": "Text to generate embeddings for",
  "model": "text-embedding-3-small",
  "encoding_format": "float"
}

Audio Transcription Request

{
  "file": {
    "buffer": "<audio_buffer>",
    "originalname": "recording.mp3",
    "mimetype": "audio/mpeg"
  },
  "model": "whisper-1",
  "language": "en",
  "response_format": "json",
  "temperature": 0
}

Streaming Request

{
  "type": "text",
  "messages": [
    {
      "role": "user",
      "content": [{ "type": "text", "text": "Write a short story" }]
    }
  ],
  "stream": true,
  "streamCallback": "function(chunk) { console.log(chunk); }",
  "model": "gpt-4o"
}