npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@bernierllc/ai-response-parser

v1.0.1

Published

Parse and validate AI model responses with JSON extraction, markdown parsing, and schema validation

Readme

@bernierllc/ai-response-parser

Parse and validate AI model responses with JSON extraction, markdown parsing, and schema validation.

Installation

npm install @bernierllc/ai-response-parser

Features

  • JSON Extraction: Extract JSON from AI responses in various formats (code blocks, inline, etc.)
  • Markdown Parsing: Extract and sanitize markdown content
  • Schema Validation: Validate extracted data against JSON schemas
  • Multiple Provider Support: Handle responses from different AI providers
  • Error Handling: Graceful handling of malformed responses
  • Security: Built-in sanitization to prevent XSS attacks
  • TypeScript: Full type safety with strict mode

Usage

Basic JSON Parsing

import { AIResponseParser } from '@bernierllc/ai-response-parser';

const parser = new AIResponseParser();

// Parse JSON from AI response
const response = `
Here is the analysis result:

\`\`\`json
{
  "score": 95,
  "passed": true,
  "feedback": "Excellent work!"
}
\`\`\`
`;

const data = parser.parseJSON<{ score: number; passed: boolean; feedback: string }>(response);

if (data) {
  console.log(`Score: ${data.score}`);
  console.log(`Passed: ${data.passed}`);
  console.log(`Feedback: ${data.feedback}`);
}

JSON Extraction with Metadata

const extracted = parser.extractJSON(response);

if (extracted.success) {
  console.log('Data:', extracted.data);
  console.log('Raw JSON:', extracted.raw);
} else {
  console.error('Error:', extracted.error);
}

Markdown Extraction

const markdown = parser.extractMarkdown(`
# Analysis Report

This is the **main content** with some formatting.

\`\`\`typescript
const example = "code";
\`\`\`

More text here.
`);

console.log('Content:', markdown.content);
console.log('Has markdown:', markdown.hasMarkdown);
console.log('Code blocks:', markdown.codeBlocks.length);

markdown.codeBlocks.forEach(block => {
  console.log(`Language: ${block.language}`);
  console.log(`Code: ${block.code}`);
  console.log(`Lines: ${block.startLine}-${block.endLine}`);
});

Schema Validation

import { JSONSchema } from '@bernierllc/ai-response-parser';

const schema: JSONSchema = {
  type: 'object',
  properties: {
    name: { type: 'string', minLength: 1 },
    age: { type: 'number', minimum: 0, maximum: 150 },
    email: {
      type: 'string',
      pattern: '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'
    }
  },
  required: ['name', 'email'],
  additionalProperties: false
};

const response = `
\`\`\`json
{
  "name": "John Doe",
  "age": 30,
  "email": "[email protected]"
}
\`\`\`
`;

const result = parser.validate(response, schema);

if (result.valid) {
  console.log('Valid data:', result.data);
} else {
  console.error('Validation errors:');
  result.errors?.forEach(error => {
    console.error(`${error.path}: ${error.message}`);
    if (error.expected) console.error(`Expected: ${error.expected}`);
    if (error.received) console.error(`Received: ${error.received}`);
  });
}

Complete Parsing

const parseResult = parser.parse(response);

if (parseResult.success) {
  console.log('JSON data:', parseResult.data);
}

if (parseResult.markdown) {
  console.log('Markdown content:', parseResult.markdown.content);
  console.log('Code blocks:', parseResult.markdown.codeBlocks);
}

if (parseResult.errors) {
  console.error('Errors:', parseResult.errors);
}

Configuration

const parser = new AIResponseParser({
  // Enable strict JSON parsing (default: true)
  strictJSON: true,

  // Maximum depth for nested objects (default: 10)
  maxDepth: 10,

  // Enable markdown sanitization (default: true)
  sanitizeMarkdown: true,

  // Custom JSON extraction patterns
  jsonPatterns: [
    /```json\s*([\s\S]*?)\s*```/g,
    /```\s*([\s\S]*?)\s*```/g,
    /\{[\s\S]*\}/g,
    /\[[\s\S]*\]/g
  ]
});

API Reference

AIResponseParser

Main parser class for handling AI responses.

Constructor

constructor(config?: ParserConfig)

Methods

parseJSON<T>(response: string): T | null

Parse JSON from response, returning typed data or null if parsing fails.

extractJSON<T>(response: string): ExtractedJSON<T>

Extract JSON with detailed success/error information.

Returns:

interface ExtractedJSON<T> {
  success: boolean;
  data?: T;
  raw?: string;
  error?: string;
}
extractMarkdown(response: string): ExtractedMarkdown

Extract markdown content and code blocks.

Returns:

interface ExtractedMarkdown {
  content: string;
  codeBlocks: CodeBlock[];
  hasMarkdown: boolean;
}
validate<T>(response: string, schema: JSONSchema): ValidationResult<T>

Validate response against JSON schema.

Returns:

interface ValidationResult<T> {
  valid: boolean;
  data?: T;
  errors?: ValidationError[];
}
parse<T>(response: string): ParseResult<T>

Complete parsing with both JSON and markdown extraction.

Returns:

interface ParseResult<T> {
  success: boolean;
  data?: T;
  markdown?: ExtractedMarkdown;
  errors?: string[];
}

JSON Schema Support

The parser supports a subset of JSON Schema for validation:

  • Types: object, array, string, number, boolean, null
  • Object: properties, required, additionalProperties
  • Array: items, minItems, maxItems
  • String: pattern, minLength, maxLength, enum
  • Number: minimum, maximum, enum

Example:

const schema: JSONSchema = {
  type: 'object',
  properties: {
    status: {
      type: 'string',
      enum: ['pending', 'active', 'completed']
    },
    items: {
      type: 'array',
      items: { type: 'string' },
      minItems: 1,
      maxItems: 10
    },
    metadata: {
      type: 'object',
      properties: {
        createdAt: { type: 'string' },
        score: { type: 'number', minimum: 0, maximum: 100 }
      },
      required: ['createdAt']
    }
  },
  required: ['status', 'items']
};

Security

The parser includes built-in security features:

  • HTML Sanitization: Removes <script>, <iframe>, and event handlers
  • Depth Limiting: Prevents stack overflow from deeply nested objects
  • Pattern Validation: Validates string patterns for common formats

To disable sanitization (not recommended):

const parser = new AIResponseParser({ sanitizeMarkdown: false });

Error Handling

All parsing methods handle errors gracefully:

// parseJSON returns null on error
const data = parser.parseJSON(response);
if (!data) {
  console.error('Failed to parse JSON');
}

// extractJSON provides detailed error information
const extracted = parser.extractJSON(response);
if (!extracted.success) {
  console.error('Error:', extracted.error);
}

// validate provides validation errors
const validation = parser.validate(response, schema);
if (!validation.valid) {
  validation.errors?.forEach(err => {
    console.error(`${err.path}: ${err.message}`);
  });
}

Integration Status

Logger Integration

Status: Integrated

Justification: This package uses @bernierllc/logger for structured logging of parsing operations. Logs include parsing errors, validation failures, and performance metrics to help with debugging and monitoring AI response processing.

Pattern: Direct integration - logger is a required dependency for this package.

NeverHub Integration

Status: Not applicable

Justification: This is a core utility package that performs AI response parsing. It does not participate in service discovery, event publishing, or service mesh operations. Response parsing is a stateless utility operation that doesn't require service registration or discovery.

Pattern: Core utility - no service mesh integration needed.

Docs-Suite Integration

Status: Ready

Format: TypeDoc-compatible JSDoc comments are included throughout the source code. All public APIs are documented with examples and type information.

Common Patterns

Parsing AI Content Review Responses

interface ReviewResult {
  grammarScore: number;
  readabilityScore: number;
  suggestions: string[];
  approved: boolean;
}

const response = await aiService.review(content);
const result = parser.parseJSON<ReviewResult>(response);

if (result && result.approved) {
  console.log('Content approved!');
  console.log('Grammar:', result.grammarScore);
  console.log('Readability:', result.readabilityScore);
}

Parsing Social Media Generation Responses

interface SocialPost {
  platform: 'twitter' | 'linkedin' | 'instagram';
  content: string;
  hashtags: string[];
  scheduledTime?: string;
}

const aiResponse = await aiService.generatePost(prompt);
const posts = parser.parseJSON<SocialPost[]>(aiResponse);

if (posts) {
  for (const post of posts) {
    await publishToSocialMedia(post);
  }
}

Handling Mixed Content Responses

const response = `
Based on my analysis:

## Summary
The content is well-written.

## Data
\`\`\`json
{
  "score": 92,
  "issues": ["Minor typo in paragraph 3"]
}
\`\`\`

## Recommendations
1. Fix the typo
2. Consider adding examples
`;

const result = parser.parse(response);

// Access JSON data
console.log('Score:', result.data?.score);

// Access markdown content
console.log('Summary:', result.markdown?.content);

Testing

The package includes comprehensive tests with 90%+ coverage:

# Run tests
npm test

# Run tests with coverage
npm run test:coverage

# Run tests once
npm run test:run

License

Copyright (c) 2025 Bernier LLC. All rights reserved.

See Also