npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@blade47/semantic-test

v1.0.5

Published

A composable, pipeline-based testing framework for AI systems and APIs with semantic validation

Readme

npm install @blade47/semantic-test

Why SemanticTest?

Testing AI systems is hard. Responses are non-deterministic, you need to validate tool usage, and semantic meaning matters more than exact text matching.

SemanticTest solves this with:

  • Composable blocks for HTTP, parsing, validation, and AI evaluation
  • Pipeline architecture where data flows through named slots
  • LLM Judge to evaluate responses semantically using GPT-4
  • JSON test definitions that are readable and version-controllable

Quick Start

1. Install

npm install @blade47/semantic-test

2. Create a test

{
  "name": "API Test",
  "version": "1.0.0",
  "context": {
    "BASE_URL": "https://api.example.com"
  },
  "tests": [
    {
      "id": "get-user",
      "name": "Get User",
      "pipeline": [
        {
          "id": "request",
          "block": "HttpRequest",
          "input": {
            "url": "${BASE_URL}/users/1",
            "method": "GET"
          },
          "output": "response"
        },
        {
          "id": "parse",
          "block": "JsonParser",
          "input": "${response.body}",
          "output": "user"
        },
        {
          "id": "validate",
          "block": "ValidateContent",
          "input": {
            "from": "user.parsed.name",
            "as": "text"
          },
          "config": {
            "contains": "John"
          },
          "output": "validation"
        }
      ],
      "assertions": {
        "response.status": 200,
        "user.parsed.id": 1,
        "validation.passed": true
      }
    }
  ]
}

3. Run it

npx semtest test.json

Core Concepts

Pipelines

Tests are pipelines of blocks that execute in sequence:

HttpRequest → JsonParser → Validate → Assert

Each block:

  • Reads inputs from named slots
  • Does one thing well
  • Writes outputs to named slots

Data Flow

Data flows through a DataBus with named slots:

{
  "pipeline": [
    {
      "id": "fetch",
      "block": "HttpRequest",
      "output": "response"        // Writes to 'response' slot
    },
    {
      "id": "parse",
      "block": "JsonParser",
      "input": "${response.body}",  // Reads from 'response.body'
      "output": "data"              // Writes to 'data' slot
    }
  ]
}

Three Input Formats

1. String - becomes { body: value }

"input": "${response.body}"

2. From/As - maps slot to parameter

"input": {
  "from": "response.body",
  "as": "text"
}

3. Object - deep resolves all values

"input": {
  "url": "${BASE_URL}/api",
  "method": "POST",
  "headers": {
    "Authorization": "Bearer ${token}"
  }
}

Three Output Formats

1. String - stores entire output

"output": "myResult"

2. Object - maps output fields to slots

"output": {
  "parsed": "data",
  "error": "parseError"
}

3. Default - uses block ID

{
  "id": "parse"
  // Output stored in 'parse' slot
}

Available Blocks

HTTP

HttpRequest - Make HTTP requests

{
  "block": "HttpRequest",
  "input": {
    "url": "https://api.example.com/users",
    "method": "POST",
    "headers": {
      "Authorization": "Bearer ${token}"
    },
    "body": {
      "name": "John Doe"
    },
    "timeout": 5000
  }
}

Parsers

JsonParser - Parse JSON

{
  "block": "JsonParser",
  "input": "${response.body}"
}

StreamParser - Parse streaming responses

{
  "block": "StreamParser",
  "input": "${response.body}",
  "config": {
    "format": "sse-vercel"  // or "sse-openai", "sse"
  }
}

Outputs: text, toolCalls, chunks, metadata

Validators

ValidateContent - Validate text

{
  "block": "ValidateContent",
  "input": {
    "from": "data.message",
    "as": "text"
  },
  "config": {
    "contains": ["success", "confirmed"],
    "notContains": ["error", "failed"],
    "minLength": 10,
    "maxLength": 1000,
    "matches": "^[A-Z].*"
  }
}

ValidateTools - Validate AI tool usage

{
  "block": "ValidateTools",
  "input": {
    "from": "parsed.toolCalls",
    "as": "toolCalls"
  },
  "config": {
    "expected": ["search_database", "send_email"],
    "forbidden": ["delete_all"],
    "order": ["search_database", "send_email"],
    "minTools": 1,
    "maxTools": 5,
    "validateArgs": {
      "send_email": {
        "to": "[email protected]"
      }
    }
  }
}

AI Judge

LLMJudge - Semantic evaluation with GPT-4

{
  "block": "LLMJudge",
  "input": {
    "text": "${response.text}",
    "toolCalls": "${response.toolCalls}",
    "expected": {
      "expectedBehavior": "Should greet the user and offer to help with their calendar"
    }
  },
  "config": {
    "model": "gpt-4o-mini",
    "criteria": {
      "accuracy": 0.4,
      "completeness": 0.3,
      "relevance": 0.3
    }
  }
}

Returns: score (0-1), reasoning, shouldContinue, nextPrompt

Control Flow

Loop - Loop back to previous blocks

{
  "block": "Loop",
  "config": {
    "target": "retry-request",
    "maxIterations": 3
  }
}

Test Suites

Organize multiple tests with shared setup/teardown:

{
  "name": "User API Tests",
  "version": "1.0.0",
  "context": {
    "BASE_URL": "${env.API_URL}",
    "API_KEY": "${env.API_KEY}"
  },
  "setup": [
    {
      "id": "auth",
      "block": "HttpRequest",
      "input": {
        "url": "${BASE_URL}/auth/login",
        "method": "POST",
        "body": {
          "username": "test",
          "password": "test123"
        }
      },
      "output": "auth"
    }
  ],
  "tests": [
    {
      "id": "create-user",
      "name": "Create User",
      "pipeline": [
        {
          "id": "request",
          "block": "HttpRequest",
          "input": {
            "url": "${BASE_URL}/users",
            "method": "POST",
            "headers": {
              "Authorization": "Bearer ${auth.body.token}"
            },
            "body": {
              "name": "Jane Doe"
            }
          },
          "output": "createResponse"
        }
      ],
      "assertions": {
        "createResponse.status": 201
      }
    },
    {
      "id": "get-user",
      "name": "Get User",
      "pipeline": [
        {
          "id": "request",
          "block": "HttpRequest",
          "input": {
            "url": "${BASE_URL}/users/${createResponse.body.id}",
            "method": "GET",
            "headers": {
              "Authorization": "Bearer ${auth.body.token}"
            }
          },
          "output": "getResponse"
        }
      ],
      "assertions": {
        "getResponse.status": 200,
        "getResponse.body.name": "Jane Doe"
      }
    }
  ],
  "teardown": [
    {
      "id": "cleanup",
      "block": "HttpRequest",
      "input": {
        "url": "${BASE_URL}/users/${createResponse.body.id}",
        "method": "DELETE",
        "headers": {
          "Authorization": "Bearer ${auth.body.token}"
        }
      }
    }
  ]
}

Assertions

Validate final results with operators:

{
  "assertions": {
    "response.status": 200,                    // Equality
    "data.count": { "gt": 10 },               // Greater than
    "data.count": { "lt": 100 },              // Less than
    "data.message": { "contains": "success" }, // Contains
    "data.email": { "matches": ".*@.*\\.com" } // Regex
  }
}

Environment Variables

Use .env file:

API_URL=https://api.example.com
API_KEY=secret123
OPENAI_API_KEY=sk-...

Reference in tests:

{
  "context": {
    "BASE_URL": "${env.API_URL}",
    "API_KEY": "${env.API_KEY}"
  }
}

Testing AI Systems

Example: Chat API

{
  "name": "AI Chat Tests",
  "context": {
    "CHAT_URL": "${env.CHAT_API_URL}",
    "API_KEY": "${env.API_KEY}"
  },
  "tests": [
    {
      "id": "chat-test",
      "name": "Chat with Tool Usage",
      "pipeline": [
        {
          "id": "chat",
          "block": "HttpRequest",
          "input": {
            "url": "${CHAT_URL}",
            "method": "POST",
            "headers": {
              "Authorization": "Bearer ${API_KEY}"
            },
            "body": {
              "messages": [
                {
                  "role": "user",
                  "content": "Search for users named John"
                }
              ]
            }
          },
          "output": "chatResponse"
        },
        {
          "id": "parse",
          "block": "StreamParser",
          "input": "${chatResponse.body}",
          "config": {
            "format": "sse-vercel"
          },
          "output": "parsed"
        },
        {
          "id": "validate-tools",
          "block": "ValidateTools",
          "input": {
            "from": "parsed.toolCalls",
            "as": "toolCalls"
          },
          "config": {
            "expected": ["search_users"]
          },
          "output": "toolValidation"
        },
        {
          "id": "judge",
          "block": "LLMJudge",
          "input": {
            "text": "${parsed.text}",
            "toolCalls": "${parsed.toolCalls}",
            "expected": {
              "expectedBehavior": "Should use search_users tool and confirm searching for John"
            }
          },
          "config": {
            "model": "gpt-4o-mini"
          },
          "output": "judgement"
        }
      ],
      "assertions": {
        "chatResponse.status": 200,
        "toolValidation.passed": true,
        "judgement.score": { "gt": 0.7 }
      }
    }
  ]
}

Why LLM Judge?

AI outputs vary. Exact text matching fails. Instead, use another LLM to evaluate semantic meaning:

  • "2:00 PM", "2 PM", "14:00" are all acceptable
  • Focuses on intent and helpfulness
  • Provides reasoning for failures
  • Configurable scoring criteria

Custom Blocks

Create a Block

// blocks/custom/MyBlock.js
import { Block } from '@blade47/semantic-test';

export class MyBlock extends Block {
  static get inputs() {
    return {
      required: ['data'],
      optional: ['config']
    };
  }

  static get outputs() {
    return {
      produces: ['result', 'metadata']
    };
  }

  async process(inputs, context) {
    const { data, config } = inputs;

    // Your logic
    const result = await processData(data, config);

    return {
      result,
      metadata: { timestamp: Date.now() }
    };
  }
}

Register It

import { blockRegistry } from '@blade47/semantic-test';
import { MyBlock } from './blocks/custom/MyBlock.js';

blockRegistry.register('MyBlock', MyBlock);

Use It

{
  "block": "MyBlock",
  "input": {
    "data": "${previous.output}",
    "config": { "mode": "fast" }
  },
  "output": "myResult"
}

See blocks/examples/ for complete examples.

CLI

# Run single test
npx semtest test.json

# Run multiple tests
npx semtest tests/*.json

# Generate HTML report
npx semtest test.json --html

# Custom output file
npx semtest test.json --html --output report.html

# Debug mode
LOG_LEVEL=DEBUG npx semtest test.json

Programmatic Usage

import { PipelineBuilder } from '@blade47/semantic-test';
import fs from 'fs/promises';

const testDef = JSON.parse(await fs.readFile('test.json', 'utf-8'));
const pipeline = PipelineBuilder.fromJSON(testDef);

const result = await pipeline.execute();

if (result.success) {
  console.log('Test passed!');
} else {
  console.error('Test failed:', result.error);
}

Examples

See test-examples/ directory:

  • simple-api-test.json - Basic REST API testing
  • validation-test.json - HTTP request, JSON parsing, and content validation
  • mock-ai-validation.json - MockData block with AI response validation
  • conditions-example.json - Advanced assertions and conditional loops

Advanced Features

Multi-turn Conversations

{
  "block": "LLMJudge",
  "input": {
    "text": "${response.text}",
    "history": [
      { "role": "user", "content": "Hello" },
      { "role": "assistant", "content": "Hi there!" },
      { "role": "user", "content": "What's the weather?" }
    ]
  },
  "config": {
    "continueConversation": true,
    "maxTurns": 5
  }
}

Custom Stream Parsers

import { StreamParser } from '@blade47/semantic-test';

function myCustomParser(body) {
  // Parse your custom format
  return {
    text: extractedText,
    toolCalls: extractedTools,
    chunks: allChunks,
    metadata: { format: 'custom' }
  };
}

StreamParser.register('my-format', myCustomParser);

Use it:

{
  "block": "StreamParser",
  "config": {
    "format": "my-format"
  }
}

Loop Control

{
  "pipeline": [
    {
      "id": "attempt",
      "block": "HttpRequest",
      "input": { "url": "${API_URL}" }
    },
    {
      "id": "check",
      "block": "ValidateContent",
      "input": { "from": "attempt.body", "as": "text" },
      "config": { "contains": "success" }
    },
    {
      "id": "retry",
      "block": "Loop",
      "config": {
        "target": "attempt",
        "maxIterations": 3
      }
    }
  ]
}

Best Practices

1. Use Meaningful Slot Names

// Good
"output": "userProfile"
"output": "authToken"

// Bad
"output": "data"
"output": "result"

2. Validate Early

{
  "pipeline": [
    { "block": "HttpRequest", "output": "response" },
    { "block": "JsonParser", "output": "data" },
    { "block": "ValidateContent" },  // Validate before expensive operations
    { "block": "LLMJudge" }          // Expensive: calls GPT-4
  ]
}

3. Use Setup/Teardown

Always clean up test data:

{
  "setup": [
    { "id": "create-test-data", "block": "..." }
  ],
  "tests": [ /* ... */ ],
  "teardown": [
    { "id": "delete-test-data", "block": "..." }
  ]
}

4. Semantic Validation for AI

Don't match exact text:

// Bad - too brittle
{
  "assertions": {
    "response.text": "The meeting is scheduled for 2:00 PM"
  }
}

// Good - semantic validation
{
  "block": "LLMJudge",
  "input": {
    "expected": {
      "expectedBehavior": "Should confirm meeting is scheduled for 2 PM"
    }
  }
}

Contributing

git clone https://github.com/blade47/semantic-test.git
cd semantic-test
npm install
npm test

Adding Blocks

  1. Create block in blocks/[category]/YourBlock.js
  2. Add tests in tests/unit/blocks/YourBlock.test.js
  3. Register in src/core/BlockRegistry.js
  4. Document in README

Testing

npm test              # All tests
npm run test:unit     # Unit tests only
npm run test:integration  # Integration tests
npm run test:watch    # Watch mode

License

MIT

Support

  • Documentation: https://docs.semantictest.dev
  • GitHub Issues: https://github.com/blade47/semantic-test/issues

Built for testing AI systems that don't play by traditional rules.