@cablate/agentic-mcp
v0.2.4
Published
Agentic MCP - Three-layer progressive disclosure for MCP servers with Socket daemon
Maintainers
Readme
Agentic-MCP
AgentSkill for MCP - Three-layer progressive disclosure validates AgentSkills.io pattern for efficient MCP token usage
Design Intent
Proven AgentSkills Pattern
In the AgentSkills.io ecosystem, Progressive Disclosure combined with Script linkage has been validated as effective:
- AI only loads specific information when needed, significantly reducing token usage
- Scripts can be invoked via AI commands, providing high customization potential
- Sharing tools via scripts is far less costly than developing and using complex MCP Servers
The impact of this pattern is significant and substantial.
Current MCP Skill Dilemma
Despite this, many Skills using MCP still face two extreme options:
Option 1: Install MCP directly in Claude Code, Skill only guides AI to call MCP
- MCP server occupies AI context long-term
- Full tool list loaded every conversation
- Token waste, and MCP itself cannot be progressively explored
Option 2: Write custom scripts yourself
- Tests user's programming skills
- High customization but lacks standards
- Each MCP has its own format/specs, high adaptation cost for both open and closed source
- Difficult to maintain and share
This Skill's Goal
Validate whether AgentSkills.io pattern applies to improving MCP usage
This concept validation attempts to port AgentSkills' successful pattern to the MCP domain:
- Can AgentSkills architecture apply to MCP server management?
- Is three-layer progressive disclosure effective in MCP scenarios?
- Is Socket-based daemon architecture more practical than direct MCP usage?
Experimental Nature
This is not a mature product, but an experiment:
- Test AgentSkills pattern applicability in MCP domain
- Explore actual effectiveness of three-layer loading
- Validate pros/cons of Daemon architecture
- Serve as reference prototype for future development
Important Disclaimer
This is a very early, rushed AI-assisted demo version with current goals:
- Validate concept feasibility
- Explore usage patterns
- Collect feedback for improvements
Not recommended for production use. Expect many issues and optimization opportunities. If you find any problems or have suggestions, please open an Issue or contribute a PR.
Core Concepts
Three-Layer Progressive Disclosure
Like AgentSkills, you don't need to load everything at once:
Layer 1: Know which servers are available
Load only basic info (name, version, status)
Usage: ~50-100 tokens
Use case: Check availability, choose serverLayer 2: Know what tools this server provides
Load tool list (names + brief descriptions)
Usage: ~200-400 tokens
Use case: Browse available tools, decide what to useLayer 3: Load only the tools you need
Load complete input format for specific tool
Usage: ~300-500 tokens/tool
Use case: Before calling toolWhy This Approach
Assume an MCP server has 20 tools, you only need 2:
| Loading Method | Token Usage | Description | |:---|:---:|:---| | Load All | 6,000 | 20 tools × 300 tokens | | Three-Layer Progressive | 850 | Metadata(50) + List(200) + 2 tools(600) | | Savings | 86% | Only load what you need |
Development Status
Future Plans
Based on concept validation results, future directions include:
Short-term Goals
- More convenient MCP Servers management (UI, auto-discovery, one-click install)
- Implement Auth features (API Key management, permission control)
Mid-term Goals
- Enhance MCP Server tool calling experience (better error messages, parameter validation, result formatting)
- Intercept MCP Server output with customizable Script data processing, avoid massive messy data entering conversation memory
This project's direction depends on:
- Concept validation results
- Community feedback
- Actual usage needs
Feedback and suggestions welcome.
Quick Start
Prerequisites
- Node.js >= 18.0.0
- npm
⚠️ Note: Python scripts are now archived in archive/python-legacy/. The project now uses a unified npm CLI.
1. Install and Build
npm install
npm run build2. Configure
Edit mcp-servers.json in the project root:
{
"servers": {
"playwright": {
"description": "Browser automation tool for web navigation, screenshots, clicks, form filling, and more",
"type": "stdio",
"command": "npx",
"args": ["@playwright/mcp@latest", "--isolated"]
}
}
}Configuration File Location Priority:
MCP_DAEMON_CONFIGenvironment variable (if set)mcp-servers.jsonin project rootconfig/mcp-servers.json(relative to daemon working directory)
3. Start Daemon
node dist/cli/index.js daemon startOr add to PATH for global usage:
npm link
# Then use from anywhere
agentic-mcp daemon start4. Test Connection
# Check daemon health
agentic-mcp daemon health
# Layer 1: Check server status
agentic-mcp metadata playwright
# Layer 2: List available tools
agentic-mcp list playwright
# Layer 3: View specific tool format
agentic-mcp schema playwright browser_navigate5. Call Tool
agentic-mcp call playwright browser_navigate --params '{"url": "https://example.com"}'Multi-Session Support
Concept
mcp-progressive-client supports multiple concurrent sessions for the same MCP server, inspired by agent-browser design patterns.
Session Types:
- Global Sessions:
{server}_global- Auto-created at daemon startup - Dynamic Sessions:
{server}_{clientId}or{server}_{timestamp}- Created on-demand
Why Multiple Sessions?
| Use Case | Description | |:---------|:------------| | Multi-Agent Parallel | Different AI Agents work simultaneously without interference | | Multi-User Isolation | Separate sessions for different users with their own state | | Environment Separation | Dev/Test/Prod environments with different configurations | | Resource Optimization | Shared daemon process, isolated connections |
Session Management API
List All Sessions
agentic-mcp session --list
# Output:
Active sessions (0):
(no active sessions)Create Dynamic Session
# With custom client ID
agentic-mcp session --create --server serena --client-id agent_a
# Auto-generated session ID (timestamp)
agentic-mcp session --create --server serenaClose Session
agentic-mcp session --close serena_agent_aSwitch Session
agentic-mcp session --switch serena_agent_bSession Lifecycle
┌─────────────────────────────────────────────┐
│ Daemon Startup │
│ ├─ Preconnect: serena → serena_global │
│ └─ Start cleanup timer (every 5 min) │
└─────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────┐
│ Runtime (Dynamic Sessions) │
│ ├─ agentic-mcp session --create → serena_agent1 │
│ ├─ agentic-mcp session --create → serena_agent2 │
│ └─ Auto-cleanup after 30 min idle │
└─────────────────────────────────────────────┘Advanced Usage
Multi-Agent Scenario:
# Terminal 1 - Agent A
agentic-mcp call serena find_file --session-id serena_agent_a --params '{"file_mask": "*.ts"}'
# Terminal 2 - Agent B (different project state)
agentic-mcp call serena activate_project --session-id serena_agent_b --params '{"project": "MyProject"}'Environment Isolation:
# Development environment
agentic-mcp session --create --server serena --client-id dev
agentic-mcp call serena activate_project --session-id serena_dev --params '{"project": "MyProject_Dev"}'
# Test environment
agentic-mcp session --create --server serena --client-id test
agentic-mcp call serena activate_project --session-id serena_test --params '{"project": "MyProject_Test"}'Usage Examples
Web Automation
Automate browser operations using Playwright MCP server:
# 1. Navigate to website
agentic-mcp call playwright browser_navigate --params '{"url": "https://www.apple.com/tw"}'
# 2. Take screenshot
agentic-mcp call playwright browser_take_screenshot
# 3. Click element
agentic-mcp call playwright browser_click --params '{"element": "Mac link", "ref": "e19"}'Hot Reload Configuration
Reload after modifying mcp-servers.json without restarting daemon:
agentic-mcp daemon reloadResponse example:
✓ Configuration reloaded
Old servers: playwright_global
New servers: playwright_global, filesystem_globalArchitecture
System Architecture
+-----------------------------+
| AI / CLI Layer |
| (CLI commands) |
| - agentic-mcp metadata |
| - agentic-mcp list |
| - agentic-mcp schema |
| - agentic-mcp call |
+-----------+-----------------+
| Socket (newline-delimited JSON)
v
+-----------------------------+
| MCP Daemon (Long-Running) |
| - Maintain persistent MCP |
| connections |
| - Socket communication |
| - Manage shared sessions |
| - Support Hot Reload |
+-----------+-----------------+
| MCP Protocol
v
+-----------------------------+
| MCP Servers |
| - playwright (browser) |
| - filesystem (files) |
| - github (Git) |
| - custom servers |
+-----------------------------+Session Management
| Session Type | Purpose | Lifecycle | |:---|:---|:---| | Global Session | Pre-connected, shared by all requests | Daemon start → shutdown | | Dynamic Session | Independent connection, specific use | On-demand → manual close |
Configuration
Environment Variables
| Variable | Default | Description |
|:---|:---:|:---|
| MCP_DAEMON_CONFIG | - | Path to custom mcp-servers.json configuration file |
Transport Types
| Type | Description | Use Case |
|:---|:---|:---|
| stdio | Standard input/output | Local MCP server (default) |
| http-streamable | HTTP streaming | Remote MCP server |
| sse | Server-Sent Events | Event-driven MCP server |
MCP Servers Configuration
Edit mcp-servers.json:
{
"servers": {
"playwright": {
"description": "Browser automation tool for web navigation, screenshots, clicks, and form filling",
"transportType": "stdio",
"command": "npx",
"args": ["@playwright/mcp@latest", "--isolated"]
}
}
}Configuration Notes:
description(optional): Server description for AI to understand the MCP server's purpose. If not provided, Layer 1 metadata will not include this field.
Resources
- SKILL.md - Complete usage guide
- docs/AGENT_BROWSER_DESIGN_PATTERNS.md - Design patterns learned from agent-browser
- MCP Specification
- MCP TypeScript SDK
- AgentSkills.io
This is a concept validation project, feedback welcome
