@caleblawson/opensearch
v0.10.3
Published
OpenSearch vector store provider for Mastra
Readme
@mastra/opensearch
Vector store implementation for OpenSearch using the official @opensearch-project/opensearch SDK
Installation
pnpm add @mastra/opensearchUsage
import { OpenSearchVector } from '@mastra/opensearch';
const vectorStore = new OpenSearchVector('http://localhost:9200');
// Create an index
await vectorStore.createIndex({ indexName: 'my-collection', dimension: 1536, metric: 'cosine' });
// Add vectors with documents
const vectors = [[0.1, 0.2, ...], [0.3, 0.4, ...]];
const metadata = [{ text: 'doc1' }, { text: 'doc2' }];
const ids = await vectorStore.upsert({ indexName: 'my-collection', vectors, metadata });
// Query vectors with document filtering
const results = await vectorStore.query({
indexName: 'my-collection',
queryVector: [0.1, 0.2, ...],
topK: 10, // topK
filter: { text: { $eq: 'doc1' } }, // metadata filter
includeVector: false, // includeVector
});Configuration
Required:
url: URL of your OpenSearch instance
Features
- Vector similarity search with Cosine, Euclidean, and Dot Product metrics
- Metadata filtering
- Optional vector inclusion in query results
- Automatic UUID generation for vectors
- Built on top of @opensearch-project/opensearch SDK
Distance Metrics
The following distance metrics are supported:
cosine→ Cosine distanceeuclidean→ Euclidean distancedotproduct→ Dot product
Methods
createIndex({ indexName, dimension, metric? }): Create a new collectionupsert({ indexName, vectors, metadata?, ids? }): Add or update vectorsquery({ indexName, queryVector, topK?, filter?, includeVector? }): Search for similar vectorslistIndexes(): List all collectionsdescribeIndex(indexName): Get collection statisticsdeleteIndex(indexName): Delete a collection
