npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@cogitator-ai/types

v0.5.0

Published

Shared TypeScript types for Cogitator

Downloads

790

Readme

@cogitator-ai/types

npm version License: MIT

Shared TypeScript types for the Cogitator AI agent runtime.

Installation

pnpm add @cogitator-ai/types

Quick Start

import type {
  Agent,
  AgentConfig,
  Tool,
  ToolConfig,
  Message,
  RunResult,
  CogitatorConfig,
} from '@cogitator-ai/types';

Type Categories

| Category | Description | | ------------------------------------------------- | --------------------------------------- | | Message | Chat messages, tool calls, tool results | | Tool | Tool definitions with Zod schemas | | Agent | Agent configuration and interface | | LLM | LLM backend and provider types | | Runtime | Cogitator config, run options, results | | Errors | Structured error handling | | Reflection | Self-analyzing agent types | | Reasoning | Tree-of-Thought reasoning | | Learning | DSPy-style optimization | | Time Travel | Execution debugging | | Knowledge Graph | Entity-relationship memory | | Prompt Optimization | A/B testing, monitoring, rollback |


Message Types

Types for LLM conversations and tool interactions.

import type {
  Message,
  MessageRole,
  ToolCall,
  ToolResult,
  ToolCallMessage,
  ToolResultMessage,
} from '@cogitator-ai/types';

// Basic message
const userMessage: Message = {
  role: 'user',
  content: 'What is 2 + 2?',
};

// Assistant message with tool calls
const assistantMessage: ToolCallMessage = {
  role: 'assistant',
  content: '',
  toolCalls: [
    {
      id: 'call_123',
      name: 'calculator',
      arguments: { expression: '2 + 2' },
    },
  ],
};

// Tool result message
const toolResult: ToolResultMessage = {
  role: 'tool',
  content: '4',
  toolCallId: 'call_123',
  name: 'calculator',
};

Message Interfaces

| Type | Description | | ------------------- | --------------------------------------------------------- | | MessageRole | 'system' \| 'user' \| 'assistant' \| 'tool' | | Message | Base message with role, content, optional name/toolCallId | | ToolCallMessage | Assistant message containing tool calls | | ToolResultMessage | Tool execution result | | ToolCall | Tool invocation with id, name, arguments | | ToolResult | Tool execution result with callId, name, result, error |


Tool Types

Types for defining agent tools with Zod schemas.

import type { Tool, ToolConfig, ToolContext, ToolSchema } from '@cogitator-ai/types';
import { z } from 'zod';

// Tool configuration
const calculatorConfig: ToolConfig<{ expression: string }, number> = {
  name: 'calculator',
  description: 'Evaluate mathematical expressions',
  category: 'math',
  parameters: z.object({
    expression: z.string().describe('Math expression to evaluate'),
  }),
  execute: async (params, context) => {
    console.log(`Run ${context.runId} executing calculator`);
    return eval(params.expression);
  },
  timeout: 5000,
  sideEffects: [],
};

// Tool context available during execution
interface ToolContext {
  agentId: string;
  runId: string;
  signal: AbortSignal;
}

Tool Interfaces

| Type | Description | | ------------------------------ | ------------------------------------------------------------------ | | ToolConfig<TParams, TResult> | Tool definition with execute function | | Tool<TParams, TResult> | Full tool with toJSON() method | | ToolContext | Execution context with agentId, runId, signal | | ToolSchema | JSON Schema representation for LLM | | ToolCategory | 'math' \| 'text' \| 'file' \| 'network' \| 'system' \| 'utility' |

Tool Options

const advancedTool: ToolConfig = {
  name: 'file_write',
  description: 'Write content to a file',
  parameters: z.object({
    path: z.string(),
    content: z.string(),
  }),
  execute: async (params) => {
    /* ... */
  },

  // Optional configuration
  category: 'file',
  tags: ['io', 'filesystem'],
  sideEffects: ['filesystem'],
  requiresApproval: true, // or (params) => params.path.includes('/etc')
  timeout: 10000,
  sandbox: { type: 'docker', image: 'node:20' },
};

Agent Types

Types for agent configuration.

import type { Agent, AgentConfig, ResponseFormat } from '@cogitator-ai/types';

const config: AgentConfig = {
  name: 'research-agent',
  model: 'openai/gpt-4o',
  instructions: 'You are a research assistant...',

  // Optional settings
  description: 'Helps with research tasks',
  tools: [calculatorTool],
  temperature: 0.7,
  topP: 0.9,
  maxTokens: 4096,
  stopSequences: ['END'],
  maxIterations: 10,
  timeout: 60000,

  // Response format
  responseFormat: { type: 'json' },
};

// Response format options
const textFormat: ResponseFormat = { type: 'text' };
const jsonFormat: ResponseFormat = { type: 'json' };
const schemaFormat: ResponseFormat = {
  type: 'json_schema',
  schema: z.object({ answer: z.string() }),
};

LLM Types

Types for LLM backends and providers.

import type {
  LLMProvider,
  LLMConfig,
  LLMBackend,
  ChatRequest,
  ChatResponse,
  ChatStreamChunk,
} from '@cogitator-ai/types';

// Supported providers
type LLMProvider = 'ollama' | 'openai' | 'anthropic' | 'google' | 'vllm';

// LLM configuration
const llmConfig: LLMConfig = {
  provider: 'openai',
  model: 'gpt-4o',
  temperature: 0.7,
  maxTokens: 4096,
};

// Chat request
const request: ChatRequest = {
  model: 'gpt-4o',
  messages: [{ role: 'user', content: 'Hello' }],
  tools: [{ name: 'calc', description: '...', parameters: { type: 'object', properties: {} } }],
  stream: true,
};

// Chat response
const response: ChatResponse = {
  id: 'chatcmpl-123',
  content: 'Hello! How can I help?',
  finishReason: 'stop',
  usage: { inputTokens: 10, outputTokens: 20, totalTokens: 30 },
};

Runtime Types

Types for Cogitator runtime configuration and execution.

import type { CogitatorConfig, RunOptions, RunResult, Span } from '@cogitator-ai/types';

// Cogitator configuration
const config: CogitatorConfig = {
  llm: {
    defaultProvider: 'openai',
    defaultModel: 'gpt-4o',
    providers: {
      openai: { apiKey: process.env.OPENAI_API_KEY! },
      ollama: { baseUrl: 'http://localhost:11434' },
      anthropic: { apiKey: process.env.ANTHROPIC_API_KEY! },
    },
  },
  limits: {
    maxConcurrentRuns: 10,
    defaultTimeout: 30000,
    maxTokensPerRun: 100000,
  },
  memory: { type: 'redis', redis: { host: 'localhost' } },
  sandbox: { type: 'docker', image: 'node:20-alpine' },
  reflection: { enabled: true, reflectAfterError: true },
};

// Run options with callbacks
const runOptions: RunOptions = {
  input: 'Calculate 2 + 2',
  context: { userId: '123' },
  threadId: 'thread_abc',
  timeout: 30000,
  stream: true,

  // Callbacks
  onToken: (token) => process.stdout.write(token),
  onToolCall: (call) => console.log('Tool called:', call.name),
  onToolResult: (result) => console.log('Tool result:', result.result),
  onRunStart: ({ runId }) => console.log('Started:', runId),
  onRunComplete: (result) => console.log('Done:', result.output),
  onRunError: (error) => console.error('Error:', error),
  onSpan: (span) => console.log('Span:', span.name),

  // Memory options
  useMemory: true,
  loadHistory: true,
  saveHistory: true,
};

RunResult

const result: RunResult = {
  output: 'The answer is 4',
  structured: { answer: 4 }, // if responseFormat was json_schema
  runId: 'run_123',
  agentId: 'agent_456',
  threadId: 'thread_789',
  usage: {
    inputTokens: 100,
    outputTokens: 50,
    totalTokens: 150,
    cost: 0.0023,
    duration: 1500,
  },
  toolCalls: [{ id: 'call_1', name: 'calculator', arguments: { expression: '2+2' } }],
  messages: [
    /* conversation history */
  ],
  trace: {
    traceId: 'trace_abc',
    spans: [
      /* execution spans */
    ],
  },
  reflections: [
    /* if reflection enabled */
  ],
  reflectionSummary: {
    /* summary stats */
  },
};

Error Types

Structured error handling with typed error codes.

import {
  CogitatorError,
  ErrorCode,
  ERROR_STATUS_CODES,
  isRetryableError,
  getRetryDelay,
} from '@cogitator-ai/types';

// Create a structured error
const error = new CogitatorError({
  message: 'LLM backend unavailable',
  code: ErrorCode.LLM_UNAVAILABLE,
  details: { provider: 'openai', endpoint: 'https://api.openai.com' },
  retryable: true,
  retryAfter: 5000,
});

// Check error type
if (CogitatorError.isCogitatorError(error)) {
  console.log(error.code); // 'LLM_UNAVAILABLE'
  console.log(error.statusCode); // 503
  console.log(error.retryable); // true
}

// Wrap any error
const wrapped = CogitatorError.wrap(new Error('timeout'), ErrorCode.LLM_TIMEOUT);

// Check if retryable
if (isRetryableError(error)) {
  const delay = getRetryDelay(error, 1000);
  await sleep(delay);
}

Error Codes

| Domain | Codes | | -------- | ----------------------------------------------------------------------------------------------------------------------------------- | | LLM | LLM_UNAVAILABLE, LLM_RATE_LIMITED, LLM_TIMEOUT, LLM_INVALID_RESPONSE, LLM_CONTEXT_LENGTH_EXCEEDED, LLM_CONTENT_FILTERED | | Sandbox | SANDBOX_UNAVAILABLE, SANDBOX_TIMEOUT, SANDBOX_OOM, SANDBOX_EXECUTION_FAILED, SANDBOX_INVALID_MODULE | | Tool | TOOL_NOT_FOUND, TOOL_INVALID_ARGS, TOOL_EXECUTION_FAILED, TOOL_TIMEOUT | | Memory | MEMORY_UNAVAILABLE, MEMORY_WRITE_FAILED, MEMORY_READ_FAILED | | Agent | AGENT_NOT_FOUND, AGENT_ALREADY_RUNNING, AGENT_MAX_ITERATIONS | | Workflow | WORKFLOW_NOT_FOUND, WORKFLOW_STEP_FAILED, WORKFLOW_CYCLE_DETECTED | | Swarm | SWARM_NO_WORKERS, SWARM_CONSENSUS_FAILED | | General | VALIDATION_ERROR, CONFIGURATION_ERROR, INTERNAL_ERROR, NOT_IMPLEMENTED, CIRCUIT_OPEN |


Reflection Types

Types for self-analyzing agents that learn from their actions.

import type {
  Reflection,
  ReflectionConfig,
  ReflectionAction,
  Insight,
  InsightStore,
  ReflectionSummary,
} from '@cogitator-ai/types';

// Reflection configuration
const reflectionConfig: ReflectionConfig = {
  enabled: true,
  reflectAfterToolCall: true,
  reflectAfterError: true,
  reflectAtEnd: true,
  storeInsights: true,
  maxInsightsPerAgent: 100,
  minConfidenceToStore: 0.7,
  useSmallModelForReflection: true,
  reflectionModel: 'gpt-4o-mini',
};

// Insight types
type InsightType = 'pattern' | 'mistake' | 'success' | 'tip' | 'warning';

// Reflection result
const reflection: Reflection = {
  id: 'ref_123',
  runId: 'run_456',
  agentId: 'agent_789',
  timestamp: new Date(),
  action: {
    type: 'tool_call',
    toolName: 'search',
    input: { query: 'AI news' },
    output: { results: [] },
    duration: 500,
  },
  analysis: {
    wasSuccessful: false,
    confidence: 0.8,
    reasoning: 'Search returned no results, should try broader query',
    whatCouldImprove: 'Use more general search terms',
  },
  insights: [
    {
      id: 'ins_1',
      type: 'tip',
      content: 'Broaden search queries when results are empty',
      context: 'search operations',
      confidence: 0.85,
      /* ... */
    },
  ],
  goal: 'Find recent AI news',
  iterationIndex: 2,
};

Reasoning Types

Tree-of-Thought (ToT) reasoning types for branching exploration.

import type {
  ToTConfig,
  ThoughtTree,
  ThoughtNode,
  ThoughtBranch,
  ToTResult,
  ExplorationStrategy,
} from '@cogitator-ai/types';

// ToT configuration
const totConfig: ToTConfig = {
  branchFactor: 3, // Generate 3 candidate thoughts per step
  beamWidth: 2, // Keep top 2 branches
  maxDepth: 5, // Max reasoning depth
  explorationStrategy: 'beam', // 'beam' | 'best-first' | 'dfs'

  confidenceThreshold: 0.3,
  terminationConfidence: 0.8,
  maxTotalNodes: 50,
  maxIterationsPerBranch: 3,

  // Callbacks
  onBranchGenerated: (node, branches) => console.log('Generated:', branches.length),
  onBranchEvaluated: (branch, score) => console.log('Score:', score.composite),
  onNodeExplored: (node) => console.log('Explored:', node.id),
  onBacktrack: (from, to) => console.log('Backtracking...'),
};

// Thought branch with proposed action
const branch: ThoughtBranch = {
  id: 'branch_1',
  parentId: 'node_0',
  thought: 'I should search for the latest information first',
  proposedAction: { type: 'tool_call', toolName: 'search', arguments: { query: 'AI news 2024' } },
  score: { confidence: 0.8, progress: 0.3, novelty: 0.6, composite: 0.57, reasoning: '...' },
  messagesSnapshot: [
    /* ... */
  ],
};

Learning Types

DSPy-inspired agent optimization types.

import type {
  ExecutionTrace,
  TraceStore,
  Demo,
  OptimizerConfig,
  OptimizationResult,
  LearningConfig,
} from '@cogitator-ai/types';

// Learning configuration
const learningConfig: LearningConfig = {
  enabled: true,
  captureTraces: true,
  autoOptimize: true,
  optimizeAfterRuns: 10,
  maxDemosPerAgent: 5,
  minScoreForDemo: 0.8,
  defaultMetrics: ['success', 'tool_accuracy', 'efficiency'],
};

// Optimizer configuration
const optimizerConfig: OptimizerConfig = {
  type: 'full', // 'bootstrap-few-shot' | 'instruction' | 'full'
  maxBootstrappedDemos: 5,
  maxRounds: 3,
  instructionCandidates: 3,
  metricThreshold: 0.7,
  teacherModel: 'gpt-4o',
};

// Execution trace
const trace: ExecutionTrace = {
  id: 'trace_123',
  runId: 'run_456',
  agentId: 'agent_789',
  input: 'Calculate compound interest',
  output: 'The compound interest is $1,628.89',
  steps: [
    /* execution steps */
  ],
  metrics: {
    success: true,
    toolAccuracy: 0.95,
    efficiency: 0.8,
    completeness: 1.0,
  },
  score: 0.92,
  isDemo: true,
  /* ... */
};

Time Travel Types

Execution debugging with checkpoints, replay, and forking.

import type {
  ExecutionCheckpoint,
  TimeTravelCheckpointStore,
  ReplayOptions,
  ReplayResult,
  ForkOptions,
  TraceDiff,
} from '@cogitator-ai/types';

// Checkpoint
const checkpoint: ExecutionCheckpoint = {
  id: 'cp_123',
  traceId: 'trace_456',
  runId: 'run_789',
  agentId: 'agent_abc',
  stepIndex: 5,
  messages: [
    /* conversation at this point */
  ],
  toolResults: { call_1: 42, call_2: 'result' },
  pendingToolCalls: [],
  label: 'before-critical-decision',
  createdAt: new Date(),
};

// Replay options
const replayOptions: ReplayOptions = {
  fromCheckpoint: 'cp_123',
  mode: 'live', // 'deterministic' | 'live'
  modifiedToolResults: { call_3: 'different_result' },
  skipTools: ['expensive_api'],
  onStep: (step, index) => console.log(`Step ${index}:`, step.type),
  pauseAt: 8,
};

// Fork options (branch execution with modifications)
const forkOptions: ForkOptions = {
  checkpointId: 'cp_123',
  input: 'Try a different approach',
  additionalContext: 'Focus on efficiency',
  mockToolResults: { api_call: { mocked: true } },
  label: 'efficiency-experiment',
};

// Compare two execution traces
const diff: TraceDiff = {
  trace1Id: 'trace_a',
  trace2Id: 'trace_b',
  stepDiffs: [
    { index: 0, status: 'identical' },
    { index: 1, status: 'similar', differences: ['different tool args'] },
    {
      index: 2,
      status: 'different',
      step1: {
        /* ... */
      },
      step2: {
        /* ... */
      },
    },
  ],
  divergencePoint: 2,
  metricsDiff: {
    success: { trace1: true, trace2: false },
    score: { trace1: 0.9, trace2: 0.6, delta: -0.3 },
    /* ... */
  },
};

Memory Types

See @cogitator-ai/memory for detailed memory adapter types.


Knowledge Graph Types

Entity-relationship memory with traversal and inference.

import type {
  GraphNode,
  GraphEdge,
  EntityType,
  RelationType,
  GraphAdapter,
  TraversalOptions,
  TraversalResult,
  GraphPath,
  EntityExtractionResult,
  InferredEdge,
} from '@cogitator-ai/types';

// Entity types
type EntityType = 'person' | 'organization' | 'location' | 'concept' | 'event' | 'object';

// Relationship types
type RelationType =
  | 'knows'
  | 'works_at'
  | 'located_in'
  | 'part_of'
  | 'related_to'
  | 'created_by'
  | 'owns'
  | 'member_of'
  | 'causes'
  | 'depends_on';

// Graph node
const node: GraphNode = {
  id: 'node_123',
  agentId: 'agent-1',
  type: 'person',
  name: 'Alice',
  aliases: ['alice_dev'],
  description: 'Software engineer',
  properties: { role: 'developer', team: 'platform' },
  embedding: [0.1, 0.2, ...],
  confidence: 1.0,
  source: 'extracted',
  createdAt: new Date(),
};

// Graph edge
const edge: GraphEdge = {
  id: 'edge_456',
  agentId: 'agent-1',
  sourceNodeId: 'node_123',
  targetNodeId: 'node_789',
  type: 'works_at',
  label: 'Senior Developer',
  weight: 1.0,
  bidirectional: false,
  confidence: 0.95,
  source: 'extracted',
  properties: { since: '2020' },
  createdAt: new Date(),
};

// Traversal options
const traversalOptions: TraversalOptions = {
  startNodeId: 'node_123',
  maxDepth: 3,
  direction: 'outgoing',
  edgeTypes: ['works_at', 'knows'],
  nodeTypes: ['person', 'organization'],
  minConfidence: 0.7,
  maxNodes: 100,
};

// Traversal result
const result: TraversalResult = {
  visitedNodes: [node1, node2, ...],
  traversedEdges: [edge1, edge2, ...],
  paths: [[node1, edge1, node2], ...],
  totalNodesVisited: 15,
  maxDepthReached: 3,
};

Prompt Optimization Types

A/B testing, monitoring, and version control for agent instructions.

import type {
  CapturedPrompt,
  PromptStore,
  ABTest,
  ABTestResults,
  ABTestOutcome,
  ABTestStore,
  InstructionVersion,
  InstructionVersionStore,
  PromptPerformanceMetrics,
  DegradationAlert,
  OptimizationRun,
} from '@cogitator-ai/types';

// Captured prompt
const prompt: CapturedPrompt = {
  id: 'prompt_123',
  runId: 'run_456',
  agentId: 'agent-1',
  model: 'gpt-4o',
  systemPrompt: 'You are a helpful assistant.',
  messages: [{ role: 'user', content: 'Hello' }],
  tools: [{ name: 'calculator', description: '...' }],
  promptTokens: 150,
  response: {
    content: 'Hi there!',
    completionTokens: 10,
    latencyMs: 450,
  },
  createdAt: new Date(),
};

// A/B test
const abTest: ABTest = {
  id: 'test_123',
  agentId: 'agent-1',
  name: 'Instruction Experiment',
  description: 'Testing concise vs verbose',
  status: 'running',
  controlInstructions: 'You are helpful.',
  treatmentInstructions: 'Be concise and direct.',
  treatmentAllocation: 0.5,
  minSampleSize: 100,
  maxDuration: 7 * 24 * 60 * 60 * 1000,
  confidenceLevel: 0.95,
  metricToOptimize: 'score',
  controlResults: { sampleSize: 50, avgScore: 0.82, ... },
  treatmentResults: { sampleSize: 48, avgScore: 0.87, ... },
  createdAt: new Date(),
  startedAt: new Date(),
};

// A/B test outcome
const outcome: ABTestOutcome = {
  winner: 'treatment',
  pValue: 0.023,
  confidenceInterval: [0.02, 0.08],
  effectSize: 0.45,
  isSignificant: true,
  recommendation: 'Treatment performs significantly better.',
};

// Instruction version
const version: InstructionVersion = {
  id: 'ver_123',
  agentId: 'agent-1',
  version: 3,
  instructions: 'Optimized instructions...',
  source: 'optimization',
  sourceId: 'opt-run-456',
  deployedAt: new Date(),
  metrics: { runCount: 100, avgScore: 0.88, successRate: 0.95 },
};

// Degradation alert
const alert: DegradationAlert = {
  id: 'alert_123',
  agentId: 'agent-1',
  type: 'score_drop',
  severity: 'warning',
  currentValue: 0.72,
  baselineValue: 0.85,
  threshold: 0.15,
  percentChange: 0.153,
  detectedAt: new Date(),
  autoAction: 'rollback',
  actionTaken: false,
};

Sandbox Types

See @cogitator-ai/sandbox for detailed sandbox execution types.

Workflow Types

See @cogitator-ai/workflows for detailed workflow types.

Swarm Types

See @cogitator-ai/swarms for detailed swarm coordination types.


License

MIT