npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@cp949/web-image-util

v2.0.24

Published

simple web image utils

Readme

@cp949/web-image-util

High-performance image processing library for web browsers

Provides various image processing capabilities including resizing, SVG processing, and format conversion based on Canvas 2D API.

Design Philosophy: Provides powerful image processing capabilities optimized for web browser environments, bringing server-side image processing convenience to the client side with Canvas 2D API.

npm version License: MIT

Key Features

  • 🎯 Complete Type Safety: TypeScript support with Discriminated Union type system
  • 🎨 High-Quality SVG Processing: Special pipeline that fully preserves vector quality
  • 🔗 Chainable API: Convenient usage with intuitive method chaining
  • ⚡ High Performance: Optimizations including Canvas Pool and smart format selection
  • 🌐 Zero Dependencies: Uses only browser native APIs
  • 📦 Tree-Shakable: Bundle size optimization with ES modules

Installation

npm install @cp949/web-image-util

🚀 Quick Start

⚡ First Success in 5 Minutes

import { processImage } from '@cp949/web-image-util';

// 🎯 Scenario 1: Social media profile image (square, high quality)
const profileImage = await processImage(userPhoto)
  .shortcut.coverBox(400, 400)  // Crop to square
  .toBlob({ format: 'webp', quality: 0.9 });

// 📱 Scenario 2: Responsive thumbnail (fast loading)
const thumbnail = await processImage(originalImage)
  .shortcut.scale(0.5)  // 50% reduction
  .toBlob({ format: 'webp', quality: 0.8 });

// 🎨 Scenario 3: Banner with watermark
const banner = await processImage(backgroundImage)
  .resize({ fit: 'cover', width: 1200, height: 400 })
  .blur(1)  // Slight blur effect
  .toBlob({ format: 'jpeg', quality: 0.85 });

🎮 More Examples

// ✨ Even simpler with convenience functions
import { createThumbnail, createAvatar } from '@cp949/web-image-util/presets';

const thumbnail = await createThumbnail(imageFile, { width: 300, height: 200 });
const avatar = await createAvatar(profilePhoto, { size: 128 });

📦 Direct Application to Your Project

# 1. Installation
npm install @cp949/web-image-util

# 2. Type definitions (TypeScript)
import { processImage } from '@cp949/web-image-util';

# 3. First image processing
const result = await processImage(file).shortcut.scale(0.8).toBlob();

📖 Table of Contents


🏗️ Architecture

Overall Flow Diagram

                                  ┌────────────────────┐
                                  │  processImage()    │
                                  │ (factory function) │
                                  └─────────┬──────────┘
                                            │
                    ┌───────────────────────┴─────────────────────┐
                    │                                             │
            ┌───────▼─────────┐                           ┌───────▼────────┐
            │ SourceConverter │                           │ ImageProcessor │
            │ (source convert)│                           │ (chaining API) │
            └───────┬─────────┘                           └───────┬────────┘
                    │                                             │
          ┌─────────▼──────────┐                          ┌───────▼────────┐
          │ SVG Detection      │                          │ LazyPipeline   │
          │ - isInlineSvg()    │                          │ - resize()     │
          │ - sniffSvgFromBlob │                          │ - blur()       │
          │ - MIME + Content   │                          └───────┬────────┘
          └─────────┬──────────┘                                  │
                    │                                             │
          ┌─────────▼──────────────┐                ┌─────────────▼─────────────┐
          │ convertSvgToElement    │                │ ResizeCalculator          │
          │ - SVG normalization    │                │ - calculateFinalLayout()  │
          │ - complexity analysis  │                │ - fit mode calculation    │
          │ - quality level select │                └─────────────┬─────────────┘
          │ - high quality render  │                              │
          └────────────────────────┘                ┌─────────────▼─────────────┐
                                                    │ OnehotRenderer            │
                                                    │ - single drawImage() call │
                                                    │ - quality setting         │
                                                    │ - background color        │
                                                    └───────────────────────────┘

Core Flow

  1. Input Processing: Convert various sources (File, URL, SVG, etc.) to HTMLImageElement
  2. Operation Accumulation: Chained methods (.resize(), .blur(), etc.) are stored in LazyPipeline
  3. Batch Rendering: Execute all processing with a single Canvas operation only at final output
  4. Format Conversion: Convert Canvas to Blob, DataURL, File, etc.

Key Features

  • Lazy Rendering: Memory-efficient processing without creating intermediate Canvas
  • SVG Compatibility: Automatic correction of browser-specific SVG rendering differences
  • Type Safety: Prevent incorrect method chaining at compile time
  • Smart Format: Automatic selection of optimal format based on browser support

🎯 Resizing Guide

Fit Modes

Provides 5 different resizing methods:

| fit mode | Maintain Ratio | Show Full | Add Padding | Crop | Scale | Use Case | | --------- | -------------- | --------- | ----------- | ---- | ------------ | ----------------------- | | cover | ✅ | ❌ | ❌ | ✅ | Both | Thumbnails, backgrounds | | contain | ✅ | ✅ | ✅ | ❌ | Both | Gallery, preview | | fill | ❌ | ✅ | ❌ | ❌ | Both | Exact size needed | | maxFit | ✅ | ✅ | ❌ | ❌ | Shrink only | Maximum size limit | | minFit | ✅ | ✅ | ❌ | ❌ | Enlarge only | Minimum size guarantee |

Basic Usage

// cover: Maintain ratio and fill entire area (default, cropping possible)
await processImage(source)
  .resize({ fit: 'cover', width: 300, height: 200 })
  .toBlob();

// contain: Maintain ratio and show full image (padding added)
await processImage(source)
  .resize({
    fit: 'contain',
    width: 300,
    height: 200,
    background: '#ffffff'  // Padding color
  })
  .toBlob();

// fill: Ignore ratio and fit exactly (image distorted)
await processImage(source)
  .resize({ fit: 'fill', width: 300, height: 200 })
  .toBlob();

// maxFit: Shrink only (no enlargement) - Protect original size
await processImage(source)
  .resize({ fit: 'maxFit', width: 800, height: 600 })
  .toBlob();

// minFit: Enlarge only (no shrinking) - Guarantee minimum size
await processImage(source)
  .resize({ fit: 'minFit', width: 800, height: 600 })
  .toBlob();

Specifying Only One Dimension

// Specify width only (height calculated automatically based on ratio)
await processImage(source)
  .resize({ fit: 'maxFit', width: 800 })
  .toBlob();

// Specify height only (width calculated automatically based on ratio)
await processImage(source)
  .resize({ fit: 'maxFit', height: 600 })
  .toBlob();

Practical Examples

// Thumbnail (square, cropping allowed)
const thumbnail = await processImage(photo)
  .resize({ fit: 'cover', width: 200, height: 200 })
  .toBlob({ format: 'webp', quality: 0.8 });

// Profile avatar (high quality)
const avatar = await processImage(userPhoto)
  .resize({ fit: 'cover', width: 150, height: 150 })
  .toBlob({ format: 'png', quality: 0.9 });

// Mobile optimization (protect original size)
const mobile = await processImage(photo)
  .resize({ fit: 'maxFit', width: 400 })
  .toBlob({ format: 'webp', quality: 0.7 });

Important: resize() Constraints

resize() can only be called once. This is a design decision to ensure image quality (especially for SVG).

// ❌ Error: Calling resize() twice
const wrong = await processImage(source)
  .resize({ fit: 'cover', width: 300, height: 200 })
  .resize({ fit: 'contain', width: 400, height: 300 }); // 💥 ImageProcessError

// ✅ Correct: Specify final size directly
const correct = await processImage(source)
  .resize({ fit: 'contain', width: 400, height: 300 })
  .toBlob();

🚀 Shortcut API

Provides intuitive shortcut API similar to Sharp.js. Commonly used resizing patterns can be expressed concisely.

Usage

import { processImage } from '@cp949/web-image-util';

// Easy usage with Shortcut API
const result = await processImage(source)
  .shortcut.coverBox(300, 200)
  .toBlob();

// Chaining is also possible
const blurred = await processImage(source)
  .shortcut.scale(1.5)
  .blur(2)
  .toBlob();

Direct Mapping

Convenience methods that are immediately converted to ResizeConfig.

// Fill box completely (some parts may be cropped)
await processImage(source).shortcut.coverBox(300, 200).toBlob();

// Fit entire image within box
await processImage(source).shortcut.containBox(300, 200).toBlob();

// Convert to exact size
await processImage(source).shortcut.exactSize(300, 200).toBlob();

// Size limits
await processImage(source).shortcut.maxWidth(500).toBlob();
await processImage(source).shortcut.maxHeight(400).toBlob();
await processImage(source).shortcut.maxSize({ width: 800, height: 600 }).toBlob();

// Minimum size guarantee
await processImage(source).shortcut.minWidth(300).toBlob();
await processImage(source).shortcut.minHeight(200).toBlob();
await processImage(source).shortcut.minSize({ width: 400, height: 300 }).toBlob();

Lazy Operations

Operations calculated based on the original image size. Actual calculation is performed at the final output.

// Uniform scaling
await processImage(source).shortcut.scale(1.5).toBlob();        // 1.5x enlargement
await processImage(source).shortcut.scale(0.5).toBlob();        // 0.5x reduction

// Specify one dimension
await processImage(source).shortcut.exactWidth(300).toBlob();   // Adjust to 300px width
await processImage(source).shortcut.exactHeight(200).toBlob();  // Adjust to 200px height

// Individual axis scaling
await processImage(source).shortcut.scaleX(2).toBlob();         // 2x horizontal only
await processImage(source).shortcut.scaleY(0.5).toBlob();       // 0.5x vertical only
await processImage(source).shortcut.scaleXY(2, 1.5).toBlob();   // 2x horizontal, 1.5x vertical

// Object form also available
await processImage(source).shortcut.scale({ sx: 2, sy: 1.5 }).toBlob();

ScaleOperation Type

The scale method can accept various forms of scale values:

// Uniform scale
scale(2)                      // number

// Horizontal only
scale({ sx: 2 })              // { sx: number }

// Vertical only
scale({ sy: 1.5 })            // { sy: number }

// Individual settings
scale({ sx: 2, sy: 0.75 })    // { sx: number, sy: number }

Chaining

Shortcut API can be freely combined with other methods:

// Shortcut + blur
const result = await processImage(source)
  .shortcut.coverBox(300, 200)
  .blur(3)
  .toBlob({ format: 'webp', quality: 0.8 });

// Lazy operation + blur
const scaled = await processImage(source)
  .shortcut.scale(1.5)
  .blur(2)
  .toDataURL();

// Complex chaining
const complex = await processImage(source)
  .shortcut.exactWidth(300)
  .blur(2)
  .toBlob();

Option Support

Some methods support additional options:

// containBox options
await processImage(source).shortcut.containBox(300, 200, {
  padding: { top: 10, bottom: 10, left: 10, right: 10 },
  background: '#ffffff',
  trimEmpty: true,
  withoutEnlargement: true
}).toBlob();

// coverBox options
await processImage(source).shortcut.coverBox(300, 200, {
  padding: { top: 5, bottom: 5, left: 5, right: 5 },
  background: '#000000'
}).toBlob();

📋 Convenience Functions (Presets)

Functions that automatically apply optimized settings for each purpose.

import {
  createThumbnail,
  createAvatar,
  createSocialImage
} from '@cp949/web-image-util/presets';

// Web thumbnail (performance optimized)
const thumbnail = await createThumbnail(source, {
  size: 300,           // 300x300 square
  format: 'webp',      // WebP first (JPEG if not supported)
  quality: 0.8         // Moderate quality
});

// Profile avatar (quality first)
const avatar = await createAvatar(userPhoto, {
  size: 64,            // 64x64
  format: 'png',       // PNG (transparency support)
  quality: 0.9         // High quality
});

// Social media image (compatibility first)
const instagramPost = await createSocialImage(photo, {
  platform: 'instagram',  // 1080x1080 auto applied
  format: 'jpeg',         // JPEG (compatibility first)
  quality: 0.85           // Balanced quality
});

// Supported platforms: 'twitter', 'facebook', 'instagram', 'linkedin', 'youtube', 'pinterest'

📥📤 Input/Output Types

Input (ImageSource)

Supports various types of image sources:

// File/Blob objects
const file = document.querySelector('input[type="file"]').files[0];
await processImage(file).resize({ width: 300, height: 200 }).toBlob();

// HTTP(S) URL
await processImage('https://example.com/photo.jpg')
  .resize({ width: 300, height: 200 })
  .toBlob();

// Data URL
await processImage('...')
  .resize({ width: 300, height: 200 })
  .toBlob();

// HTMLImageElement
const img = document.querySelector('img');
await processImage(img).resize({ width: 300, height: 200 }).toBlob();

// ArrayBuffer / Uint8Array
await processImage(arrayBuffer).resize({ width: 300, height: 200 }).toBlob();

// SVG string
const svgXml = '<svg width="100" height="100">...</svg>';
await processImage(svgXml).resize({ width: 200, height: 200 }).toBlob();

Output Formats

toBlob() - For file upload

const result = await processImage(source)
  .resize({ fit: 'cover', width: 300, height: 200 })
  .toBlob({ format: 'webp', quality: 0.8 });

// Metadata
console.log(result.blob);           // Blob object
console.log(result.width);          // Post-processing width
console.log(result.height);         // Post-processing height
console.log(result.processingTime); // Processing time (ms)

// Upload with FormData
const formData = new FormData();
formData.append('image', result.blob);
await fetch('/upload', { method: 'POST', body: formData });

toDataURL() - For immediate display

const result = await processImage(source)
  .resize({ fit: 'contain', width: 300, height: 200 })
  .toDataURL({ format: 'png' });

// Direct use in img tag
document.querySelector('img').src = result.dataURL;

toFile() - With filename

const result = await processImage(source)
  .resize({ fit: 'cover', width: 300, height: 200 })
  .toFile('thumbnail.webp', { quality: 0.8 });

console.log(result.file.name);  // 'thumbnail.webp'
console.log(result.file.size);  // File size (bytes)

toCanvas() - For additional processing

const canvas = await processImage(source)
  .resize({ fit: 'contain', width: 300, height: 200 })
  .toCanvas();

// Additional drawing operations on canvas
const ctx = canvas.getContext('2d');
ctx.fillText('Watermark', 10, 20);

🎨 SVG Processing

Automatic SVG Detection and High-Quality Rendering

The core technology of the library, accurately and safely detecting various forms of SVG input to fully preserve vector quality.

Supported SVG Source Types

// 1. SVG XML string
const svgXml = '<svg width="100" height="100">...</svg>';
await processImage(svgXml).resize({ width: 200, height: 200 }).toBlob();

// 2. Data URL SVG
const svgDataUrl = '';
await processImage(svgDataUrl).resize({ width: 200, height: 200 }).toBlob();

// 3. HTTP(S) URL (.svg extension or Content-Type: image/svg+xml)
await processImage('https://example.com/icon.svg')
  .resize({ width: 200, height: 200 })
  .toBlob();

// 4. File/Blob object (type='image/svg+xml' or .svg extension)
const svgFile = new File([svgXml], 'icon.svg', { type: 'image/svg+xml' });
await processImage(svgFile).resize({ width: 200, height: 200 }).toBlob();

SVG Quality Guarantee

Ensures sharp results regardless of SVG resizing size:

// High-quality SVG resizing - sharp even when enlarged to 1000x1000
const result = await processImage(svgString)
  .resize({ fit: 'cover', width: 1000, height: 1000 })
  .toBlob({ format: 'png' });

Technical Features:

  • Vector Quality Preservation: Keep SVG original intact and render directly to target size on Canvas
  • Accurate Detection: Precise <svg> tag matching after removing BOM, XML prologue, comments, DOCTYPE
  • False Positive Prevention: Accurately distinguish non-SVG sources like SVG in HTML, general XML
  • Dual Verification: Safe detection through MIME type + content sniffing

SVG Compatibility Enhancement (Optional)

Automatically fix and render non-standard SVGs:

import { enhanceBrowserCompatibility } from '@cp949/web-image-util/utils';

const { enhanced, report } = enhanceBrowserCompatibility(svgString, {
  fixDimensions: true,    // Fix dimension attributes
  addNamespaces: true,    // Auto-add xmlns attributes
  modernizeSyntax: true   // Modernize legacy syntax
});

console.log('Processing result:', report.warnings);
await processImage(enhanced).resize({ width: 300, height: 200 }).toBlob();

📚 API Reference

processImage()

The main entry point function that starts image processing chaining.

function processImage(source: ImageSource): ImageProcessor

ImageProcessor Class

.resize(config: ResizeConfig)

Resizes the image. Can only be called once.

interface ResizeConfig {
  fit: 'cover' | 'contain' | 'fill' | 'maxFit' | 'minFit';
  width?: number;
  height?: number;
  background?: string;  // Padding color in contain mode
  padding?: number | { top?, right?, bottom?, left? };
  trimEmpty?: boolean;  // Remove padding in contain mode
}

.blur(radius: number)

Applies blur effect (radius 1-10).

await processImage(source)
  .resize({ fit: 'cover', width: 400, height: 300 })
  .blur(3)
  .toBlob();

Output Methods

// Return as Blob
await processor.toBlob(options?: {
  format?: 'jpeg' | 'png' | 'webp' | 'avif',
  quality?: number  // 0-1
}): Promise<ResultBlob>

// Return as Data URL
await processor.toDataURL(options?): Promise<ResultDataURL>

// Return as File object
await processor.toFile(filename: string, options?): Promise<ResultFile>

// Return as Canvas element
await processor.toCanvas(): Promise<HTMLCanvasElement>

Type Definitions

// Input source types
type ImageSource =
  | HTMLImageElement
  | Blob
  | File
  | ArrayBuffer
  | Uint8Array
  | string; // URL, Data URL, SVG XML, file path

// Result types
interface ResultBlob {
  blob: Blob;
  width: number;
  height: number;
  format: ImageFormat;
  size: number;          // bytes
  processingTime: number; // ms
}

// Error class
class ImageProcessError extends Error {
  code: string;  // 'INVALID_INPUT', 'PROCESSING_FAILED', 'OUTPUT_FAILED', etc.
  details?: any;
}

Utility Functions

// SVG compatibility enhancement
import { enhanceBrowserCompatibility, enhanceSvgForBrowser } from '@cp949/web-image-util/utils';

// SVG complexity analysis
import { analyzeSvgComplexity } from '@cp949/web-image-util';

// SVG dimension extraction
import { extractSvgDimensions } from '@cp949/web-image-util';

// Format conversion
import { toBlob, toDataURL, toFile } from '@cp949/web-image-util/utils';

⚙️ Browser Support

Recommended Browser Versions:

  • Chrome 88+
  • Firefox 90+
  • Safari 14+
  • Edge 88+

Feature Check:

import { features } from '@cp949/web-image-util';

console.log(features.webp);           // WebP support
console.log(features.avif);           // AVIF support
console.log(features.offscreenCanvas); // OffscreenCanvas support
console.log(features.imageBitmap);    // ImageBitmap support

🚨 Error Handling

import { processImage, ImageProcessError } from '@cp949/web-image-util';

try {
  const result = await processImage(source)
    .resize({ fit: 'cover', width: 300, height: 200 })
    .toBlob();
} catch (error) {
  if (error instanceof ImageProcessError) {
    console.error(`[${error.code}] ${error.message}`);
    // Error codes: 'INVALID_INPUT', 'INVALID_DIMENSIONS', 'PROCESSING_FAILED',
    //              'OUTPUT_FAILED', 'MULTIPLE_RESIZE_NOT_ALLOWED', etc.

    if (error.details) {
      console.log('Details:', error.details);
    }
  }
}

📦 Sub-packages

Optimize bundle size by importing only needed features:

// Main API
import { processImage } from '@cp949/web-image-util';

// Convenience functions
import { createThumbnail, createAvatar } from '@cp949/web-image-util/presets';

// Utility functions
import { enhanceBrowserCompatibility } from '@cp949/web-image-util/utils';

📄 License

MIT License


🔗 Related Links


Made with ❤️ for the web