npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@datastax/astra-mongoose

v1.4.0

Published

Astra's NodeJS Mongoose compatibility client

Downloads

832

Readme

astra-mongoose ci-tests

astra-mongoose is a Mongoose driver for Data API. It supports connecting to DataStax Astra as well as self-hosted Data API on top of Apache Cassandra / DataStax Enterprise.

  1. Quickstart
  2. Architecture
  3. Version compatibility
  4. Sample Applications
  5. Connecting to DSE/HCD
  6. Features Using Collections
  7. Features Using Tables
  8. API Reference
  9. Developer Guide

Quickstart

Prerequisites: Node.js (>=20.0.0), npm/yarn

  • Create a sample project called 'sample-app'
mkdir sample-app
cd sample-app
  • Initialize and add required dependencies
npm init -y && npm install express mongoose @datastax/astra-mongoose

OR

yarn init -y && yarn add express mongoose @datastax/astra-mongoose

ESM:

// Imports
import express from 'express';
import mongoose from 'mongoose';
import { driver, createAstraUri } from '@datastax/astra-mongoose';
const Schema = mongoose.Schema;

// Override the default Mongoose driver
mongoose.setDriver(driver);

// Create a connection string for Astra
const uri = createAstraUri(
  process.env.ASTRA_API_ENDPOINT,
  process.env.ASTRA_APPLICATION_TOKEN
);

// Set up mongoose
await mongoose.connect(uri);
const Product = mongoose.model('Product', new Schema({ name: String, price: Number }));
Object.values(mongoose.connection.models).map(Model => Model.init());

// Set up Express app with endpoints
const app = express();
app.get('/addproduct', (req, res) => {
    const newProduct = new Product(
        {
            name: 'product' + Math.floor(Math.random() * 99 + 1),
            price: '' + Math.floor(Math.random() * 900 + 100)
        });
    newProduct.save();
    res.send('Added a product!');
});
app.get('/getproducts', (req, res) => {
    Product.find()
        .then(products => res.json(products));
});

// Start server
const HOST = '0.0.0.0';
const PORT = 8097;
await app.listen(PORT, HOST);
console.log(`Running on http://${HOST}:${PORT}`);
console.log('http://localhost:' + PORT + '/addproduct');
console.log('http://localhost:' + PORT + '/getproducts');

CommonJS:

// Imports
const express = require('express');
const mongoose = require('mongoose');
const { driver, createAstraUri } = require('@datastax/astra-mongoose');
const Schema = mongoose.Schema;

// Override the default Mongoose driver
mongoose.setDriver(driver);

// Create a connection string for Astra
const uri = createAstraUri(
  process.env.ASTRA_API_ENDPOINT,
  process.env.ASTRA_APPLICATION_TOKEN
);

// Set up mongoose
mongoose.connect(uri);
const Product = mongoose.model('Product', new Schema({ name: String, price: Number }));
Object.values(mongoose.connection.models).map(Model => Model.init());

// Set up Express app with endpoints
const app = express();
app.get('/addproduct', (req, res) => {
    const newProduct = new Product(
        {
            name: 'product' + Math.floor(Math.random() * 99 + 1),
            price: '' + Math.floor(Math.random() * 900 + 100)
        });
    newProduct.save();
    res.send('Added a product!');
});
app.get('/getproducts', (req, res) => {
    Product.find()
        .then(products => res.json(products));
});

// Start server
const HOST = '0.0.0.0';
const PORT = 8097;
app.listen(PORT, HOST, () => {
    console.log(`Running on http://${HOST}:${PORT}`);
    console.log('http://localhost:' + PORT + '/addproduct');
    console.log('http://localhost:' + PORT + '/getproducts');
});
  • Execute below to run the app
node index.js
  • Create a product
curl http://localhost:8097/addproduct
  • View the newly created product
curl http://localhost:8097/getproducts

Architecture

High level architecture

Components

  • Cassandra Cluster - Apache Cassandra / DataStax Enterprise Cluster as backend database.
  • Data API - Data API is an open source HTTP API that allows interacting with Apache Cassandra/DSE Cluster.
  • JavaScript Clients that use Mongoose - Mongoose is an elegant MongoDB object modeling library for Node.js applications. By implementing a driver required by the Mongoose interface to connect to Data API instead of native MongoDB access layer, now a JavaScript client can store/retrieve documents on an Apache Cassandra/DSE Cluster.
  • Astra - Astra is a managed DBaaS service that provides a fully managed Cassandra database service. Astra includes a managed Data API service that allows interacting with data stored in Astra.
  • Stargate - Stargate is an open source project that provides a RESTful API for interacting with Apache Cassandra/DSE Cluster. Data API currently relies on Stargate internally.

The current implementation of the Data API uses DataStax Enterprise (DSE) as the backend database.

Version compatibility

| Component/Library Name | Version | |------------------------|--------------------| | Mongoose | ^8.14.0 | | data-api | 1.x | | DataStax Enterprise | 6.8.x | | Astra | Current |

CI tests are run using the Stargate and Data API versions specified in the api-compatibility.versions file.

Sample Applications

Sample applications developed using @datastax/astra-mongoose driver are available in below repository.

https://github.com/stargate/stargate-mongoose-sample-apps

Connecting to DSE/HCD

Astra-mongoose also supports connecting to self-hosted Data API instances backed by DSE/HCD. Astra-mongoose has a bin/start_data_api.sh script that you can run to start a local Data API instance backed by DSE using docker-compose for testing and development purposes.

./bin/start_data_api.sh

You can then connect to your local Data API instance using mongoose.connect() with isAstra: false as follows.

const mongoose = require('mongoose');
const { driver } = require('@datastax/astra-mongoose');

// Override the default Mongoose driver
mongoose.setDriver(driver);

await mongoose.connect('http://localhost:8181/v1/testks1', {
  isAstra: false,
  username: 'cassandra',
  password: 'cassandra'
});

Features Using Collections

Connection APIs

| Operation Name | Description | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------| | createDatabase | When flag createNamespaceOnConnect is set to true the keyspace passed on to the mongoose.connect function via the URL, is created automatically. Not supported on Astra. | | dropDatabase | Drops the database (not supported on Astra) | | createCollection | mongoose.model('ModelName',modelSchema) creates a collection as required | | dropCollection | model.dropCollection() drops the collection |

Collection APIs

| Operation Name | Description | |-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | countDocuments | Model.countDocuments(filter) returns the count of documents | | deleteMany | Model.deleteMany(filter). | | deleteOne | Model.deleteOne(filter, options) options - sort | | find | Model.find(filter, projection, options) options - limit, pageState, skip, sort (skip works only with sorting) | | findOne | Model.findOne(filter, options) options - sort Example: findOne({}, { sort: { username: -1 } }) | | findOneAndDelete | Model.findOneAndDelete(filter, options) options - sort | | findOneAndReplace | Model.findOneAndReplace(filter, replacement, options)options upsert: (default false)true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsertoperators.false - new document will not be inserted when no match is found for the given filter--------returnDocument: (default before)before - Return the document before the changes were appliedafter - Return the document after the changes are applied | | findOneAndUpdate | Model.findOneAndUpdate(filter, update, options)options upsert: (default false)true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsertoperators.false - new document will not be inserted when no match is found for the given filter--------returnDocument: (default before)before - Return the document before the changes were appliedafter - Return the document after the changes are applied | | | insertMany | Model.insertMany([{docs}], options) In a single call, only 20 records can be inserted. options - ordered | | insertOne | Model.insertOne({doc}) | | updateMany | Model.updateMany(filter, update, options)options upsert: (default false)true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsertoperators.false - new document will not be inserted when no match is found for the given filter** This API will throw an error when more than 20 records are found to be updated. | | updateOne | Model.updateOne(filter, update, options)options upsert: (default false)true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsertoperators.false - new document will not be inserted when no match is found for the given filter--------returnDocument: (default before)before - Return the document before the changes were appliedafter - Return the document after the changes are applied |

Filter Clause

| Operator | Description | |--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | literal comparison | Equal to. Example: { 'first_name' : 'jim' } | | $eq | Example: { 'first_name' : { '$eq' : 'jim' } } | | $gt | Example (age > 25): { 'age' : { '$gt' : 25 } } | | $gte | Example (age >= 25): { 'age' : { '$gte' : 25 } } | | $lt | Example (age < 25): { 'age' : { '$lt' : 25 } } | | $lte | Example (age <= 25): { 'age' : { '$lte' : 25 } } | | $ne | Example: { 'first_name' : { '$ne' : 'jim' } } | | $in | Example: { '_id' : { '$in' : ['nyc', 'la'] } } | | $nin | Example: { 'address.city' : { '$nin' : ['nyc', 'la'] } } | | $not | Not supported. | | $exists | Example: { 'address.city' : { '$exists' : true} } | | $all | Array operation. Matches if all the elements of an array matches the given values. Example: { 'tags' : { '$all' : [ 'home', 'school' ] } } | | $elemMatch | Not supported. Matches if the elements of an array in a document matches the given conditions. Example: {'goals': { '$elemMatch': { '$gte': 2, '$lt': 10 }}} | | $size | Array Operation. Example: { 'tags' : { '$size' : 1 } } | | $and (implicit) | Logical expression. Example : { '$and' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } | | $and (explicit) | Example : { '$and' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } | | $or | Example: { '$or' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } |

Projection Clause

| Operator | Description | |-------------------------|----------------------------------------------------------------------------------------------------------------------------------| | $elemMatch (projection) | Not supported | | $slice | Array related operation. Example: { 'tags' : { '$slice': 1 }} returns only the first element from the array field called tags. | | $ (projection) | Example: Model.find({}, { username : 1, _id : 0}) - This returns username in the response and the _id field |

Sort Clause

| Operator | Description | |-------------------|---------------| | Single Field Sort | Supported | | Multi Field Sort | Not supported |

Update Clause

| Operator | Description | |--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | $inc | Example: { '$inc': { 'points' : 5 } } | | $min | Example: { 'col': { '$min' : 5 } } if the columns value is greater than 5, it will be updated with 5 | | $max | Example: { 'col': { '$max' : 50 } } if the columns value is lesser than 50, it will be updated with 50 | | $rename | Example: { $rename: { '$max' : 50 } } if the columns value is lesser than 50, it will be updated with 50 | | $set | Example: {'update' : {'$set': {'location': 'New York'} }} | | $setOnInsert | Example: {'update' : {'$set': {'location': 'New York'}, '$setOnInsert': {'country': 'USA'} }} | | $unset | Example: {'update' : {'$unset': [address.location] }} | | $addToSet | Example: {'$addToSet' : {'points': 10}}. This will add 10 to an array called points in the documents, without duplicates (i.e. ll skip if 10 is already present in the array) | | $pop | Example: {'$pop' : {'points': 1 }}. This removes the last 1 item from an array called points. -1 will remove the first 1 item. | | $pull | Not supported | | $push | Example. '$push': {'tags': 'work'}. This pushes an element called work to the array tags | | $pullAll | Not supported |

Index Operations

Index operations are not supported.

Aggregation Operations

Aggregation operations are not supported.

Transaction Operations

Transaction operations are not supported.

Vector Search

Vector search is supported. Define a $vector property in your schema, and you can sort documents by their distance to a given vector using sort({ $vector: { $meta } }) as follows.

const vectorSchema = new Schema(
    {
        $vector: { type: [Number], default: () => void 0, select: true },
        name: 'String'
    },
    {
        // Create a collection with a 2-dimensional $vector property
        collectionOptions: { vector: { dimension: 2, metric: 'cosine' } },
        autoCreate: false
    }
);
const Vector = mongoose.model('Vector', vectorSchema);
await Vector.createCollection();

// Find vectors that are closest to [1, 99]
const res = await Vector.find({}).sort({ $vector: { $meta: [1, 99] } });

Vectorize

Vectorize is supported. Define a $vectorize string property in your schema, and you can insert documents with a vector as follows.

const vectorSchema = new Schema(
    {
        $vector: { type: [Number], default: () => void 0, dimension: 1024 },
        $vectorize: { type: String },
        name: 'String'
    },
    {
        collectionOptions: {
            vector: {
                dimension: 1024,
                metric: 'cosine',
                service: { provider: 'nvidia', modelName: 'NV-Embed-QA' }
            }
        },
        autoCreate: false
    }
);
const Vector = mongooseInstance.model('Vector', vectorSchema);

const { _id } = await Vector.create({ name: 'Moby-Dick', $vectorize: 'Call me Ishmael.' });
// Need `select({ '*': 1 })` because Data API excludes $vector and $vectorize by default
const doc = await Vector.findById(_id).select({ '*': 1 }).orFail();

doc.$vectorize; // 'Call me Ishmael.'
doc.$vector; // Length 1024 array of numbers calculated by the embedding provider

Features Using Tables

You can enable the useTables option in the connection string to use the Tables API as opposed to the Collections API. The following operations are supported in the tables API.

Connection APIs

| Operation Name | Description | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------| | createDatabase | When flag createNamespaceOnConnect is set to true the keyspace passed on to the mongoose.connect function via the URL, is created automatically. Not supported on Astra. | | dropDatabase | Drops the database (not supported on Astra) | | createTable | connection.createTable() | | dropTable | connection.dropTable()

Table APIs

| Operation Name | Description | |-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | countDocuments | Not supported | | deleteMany | Model.deleteMany(filter). | | deleteOne | Model.deleteOne(filter, options) Must specify _id in filter | | find | Model.find(filter, projection, options) options - limit, skip, sort (skip works only with sorting) | | findOne | Model.findOne(filter, options) options - sort Example: findOne({}, { sort: { username: -1 } }) | | findOneAndDelete | Not supported | | findOneAndReplace | Not supported | | findOneAndUpdate | Not supported | | | insertMany | Model.insertMany([{docs}], options) | | insertOne | Model.insertOne({doc}) | | updateMany | Not supported | | updateOne | Model.updateOne(filter, update, options)options upsert: (default false)true - if a document is not found for the given filter, a new document will be inserted with the values in the filter (eq condition) and the values in the $set and $setOnInsertoperators.false - new document will not be inserted when no match is found for the given filter |

Filter Clause

| Operator | Description | |--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | literal comparison | Equal to. Example: { 'first_name' : 'jim' } | | $eq | Example: { 'first_name' : { '$eq' : 'jim' } } | | $gt | Example (age > 25): { 'age' : { '$gt' : 25 } } | | $gte | Example (age >= 25): { 'age' : { '$gte' : 25 } } | | $lt | Example (age < 25): { 'age' : { '$lt' : 25 } } | | $lte | Example (age <= 25): { 'age' : { '$lte' : 25 } } | | $ne | Example: { 'first_name' : { '$ne' : 'jim' } } | | $in | Example: { '_id' : { '$in' : ['nyc', 'la'] } } | | $nin | Example: { 'address.city' : { '$nin' : ['nyc', 'la'] } } | | $not | Not supported. | | $exists | Not supported. | | $all | Not supported. | | $elemMatch | Not supported. | | $size | Not supported. | | $and (implicit) | Logical expression. Example : { '$and' : [ {first_name : 'jim'}, {'age' : {'$gt' : 25 } } ] } | | $and (explicit) | Not supported. | | $or | Not supported.

Sort Clause

| Operator | Description | |-------------------|---------------| | Single Field Sort | Supported | | Multi Field Sort | Not supported |

Update Clause

| Operator | Description | |--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | $inc | Not supported. | | $min | Not supported. | | $max | Not supported. | | $rename | Not supported. | | $set | Example: {'update' : {'$set': {'location': 'New York'} }} | | $setOnInsert | Not supported. | | $unset | Example: {'update' : {'$unset': [address.location] }} | | $addToSet | Not supported. | | $pop | Not supported. | | $pull | Not supported | | $push | Not supported. | | $pullAll | Not supported. |

Index Operations

Indexes are supported. Indexes can be created using the createIndex method on the collection object, or by defining an index in your Mongoose schema. However, indexes are limited to 1 key: compound indexes are not supported.

const testSchema = new Schema({ testProperty: String, otherTestProperty: String });

testSchema.index({ testProperty: 1 });
const TestModel = mongoose.model('Test', testSchema);
await TestModel.createIndexes(); // Creates the index on `testProperty`

// Cannot do the following because it is a compound index (multiple keys).
// Throws a "indexSpec must have exactly 1 key" error
// testSchema.index({ testProperty: 1, otherTestProperty: 1 });

Aggregation Operations

Aggregation operations are not supported.

Transaction Operations

Transaction operations are not supported.

Vector Search

Vector search is supported. Define a property of type [Number] with a dimension property and Mongoose will treat it as a vector when you use tableDefinitionForSchema.

import { tableDefinitionFromSchema } from '@datastax/astra-mongoose';

const vectorSchema = new Schema(
    {
        vector: { type: [Number], default: () => void 0, dimension: 2 },
        name: 'String'
    },
    {
        autoCreate: false,
        autoIndex: false,
        versionKey: false
    }
);

const Vector = mongoose.model('VectorTable', vectorSchema, 'vector_table');

// Create table and vector index
await mongoose.connection.createTable('vector_table', tableDefinitionFromSchema(vectorSchema));
await mongoose.connection.collection('vector_table').createVectorIndex('vectortables', 'vector');

// Find vectors that are closest to [1, 99]
const res = await Vector.find({}, null, { includeSimilarity: true }).sort({ vector: { $meta: [1, 99] } });

Vectorize

Vectorize is supported. Use the Vectorize type exported by astra-mongoose.

import { tableDefinitionFromSchema, Vectorize } from '@datastax/astra-mongoose';

// Define raw document type override because Mongoose's TypeScript support can't infer the type of Vectorize
interface IVector {
    vector: string | number[] | null;
    name?: string | null;
}
const vectorSchema = new Schema<IVector>({ name: 'String' }, { autoCreate: false });
// Add the vectorize path using `schema.path()` and the `Vectorize` type for better TypeScript support.
// You can also do `type: Vectorize, dimension: 1024` in your schema definition.
vectorSchema.path('vector', new Vectorize('vector', {
    default: [],
    dimension: 1024,
    service: {
        provider: 'nvidia',
        modelName: 'NV-Embed-QA'
    }
}));

const Vector = mongoose.model('vector', vectorSchema, 'vector_table');

// Create table and vector index
await mongoose.connection.createTable('vector_table', tableDefinitionFromSchema(vectorSchema));
await mongoose.connection.collection('vector_table').createVectorIndex('vectortables', 'vector');

await Vector.create({ name: 'Recipe', vector: 'My Taco Recipe: 1 corn tortilla, 2 oz ground beef' });
await Vector.create({ name: 'Story', vector: 'Colorful butterflies soar high above the blooming garden' });

const doc = await Vector.findOne().sort({ vector: { $meta: 'mexican food' } }).orFail();
doc.name; // 'Recipe'