npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@disdjj/deco

v0.1.0

Published

Multi-agent AI coding system with TODO-driven task execution for OpenCode

Readme

🎭 Deco

Multi-Agent AI Coding System | 多智能体 AI 编程系统

CI License: MIT

English | 中文


English

What is Deco?

Deco is a TODO-driven multi-agent AI coding system built as a plugin for OpenCode. It orchestrates 8 specialized AI agents to complete software development tasks with persistent tracking that survives session interruptions.

Key Philosophy: The Conductor plans and delegates, specialized agents execute. Work never stops until all TODOs are complete.

Features

🎭 8 Specialized Agents

| Agent | Model | Role | |-------|-------|------| | Conductor | Claude Opus 4.5 | Orchestrator - plans, delegates, never writes code | | Coder | GPT-5.2 Codex | Backend, API, database, CLI | | Artist | Gemini 3 Pro | Frontend, UI, styling, components | | Scout | Claude Haiku 4 | Fast codebase exploration | | Researcher | Claude Sonnet 4.5 | External docs, OSS examples | | Architect | Gemini 3 Pro | System design, architecture decisions | | Reviewer | GPT-5.2 Codex | Code reviews (batch and final) | | Scribe | Gemini 3 Flash | Documentation |

📋 TASK Persistence System

Tasks are stored in llmdoc/tasks/ with full state:

llmdoc/tasks/active/{task-id}/
├── README.md           # Overview and status
├── requirements.md     # Requirements
├── plan.md            # Technical plan
├── progress.json      # Machine-readable state
├── subtasks/          # Individual subtasks
└── reviews/           # Code reviews

Session interrupted? No problem. Resume exactly where you left off.

🔄 TODO-Driven Execution

The iron law: never stop until done.

  1. Identify executable subtasks
  2. Dispatch to agents in parallel
  3. Monitor and update progress
  4. Trigger reviews at thresholds
  5. Archive on completion

🔌 3 Core Hooks

| Hook | Function | |------|----------| | todo-continuation | Forces completion of pending TODOs | | task-driver | Drives TASK system execution | | checkpoint | Saves progress periodically |

Installation

# Add to your OpenCode config (~/.config/opencode/opencode.json)
{
  "plugin": ["@disdjj/deco"]
}

Configuration

Create .opencode/deco.json (project) or ~/.config/opencode/deco.json (global):

{
  "$schema": "https://raw.githubusercontent.com/TokenRollAI/deco/main/assets/deco.schema.json",
  "agents": {
    "conductor": { "model": "anthropic/claude-sonnet-4-5" },
    "scout": { "model": "opencode/grok-code" }
  },
  "disabled_agents": [],
  "disabled_hooks": [],
  "task": {
    "batchReviewThreshold": 3,
    "checkpointIntervalMs": 300000
  }
}

Usage

Once installed, the Conductor becomes the primary agent. Simply describe your task:

Build a REST API for user authentication with JWT tokens

The Conductor will:

  1. Create a TASK structure
  2. Break down into subtasks
  3. Dispatch to Coder, Scout, Reviewer as needed
  4. Track progress until completion

Development

# Install dependencies
bun install

# Type check
bun run typecheck

# Build
bun run build

# Run tests
bun test

中文

什么是 Deco?

Deco 是一个基于 TODO 驱动的多智能体 AI 编程系统,作为 OpenCode 的插件构建。它协调 8 个专业 AI 智能体来完成软件开发任务,并具有持久化追踪功能,即使会话中断也能恢复。

核心理念:Conductor 负责规划和分配,专业智能体负责执行。工作永不停止,直到所有 TODO 完成。

特性

🎭 8 个专业智能体

| 智能体 | 模型 | 职责 | |--------|------|------| | Conductor | Claude Opus 4.5 | 协调者 - 规划、分配,从不直接写代码 | | Coder | GPT-5.2 Codex | 后端、API、数据库、CLI | | Artist | Gemini 3 Pro | 前端、UI、样式、组件 | | Scout | Claude Haiku 4 | 快速代码库探索 | | Researcher | Claude Sonnet 4.5 | 外部文档、开源示例 | | Architect | Gemini 3 Pro | 系统设计、架构决策 | | Reviewer | GPT-5.2 Codex | 代码审查(批量和最终) | | Scribe | Gemini 3 Flash | 文档编写 |

📋 TASK 持久化系统

任务存储在 llmdoc/tasks/ 中,包含完整状态:

llmdoc/tasks/active/{task-id}/
├── README.md           # 概述和状态
├── requirements.md     # 需求文档
├── plan.md            # 技术方案
├── progress.json      # 机器可读的状态
├── subtasks/          # 子任务详情
└── reviews/           # 代码审查记录

会话中断?没问题。 从上次离开的地方精确恢复。

🔄 TODO 驱动执行

铁律:永不停止,直到完成

  1. 识别可执行的子任务
  2. 并行分配给智能体
  3. 监控并更新进度
  4. 在阈值触发审查
  5. 完成后归档

🔌 3 个核心 Hooks

| Hook | 功能 | |------|------| | todo-continuation | 强制完成待处理的 TODO | | task-driver | 驱动 TASK 系统执行 | | checkpoint | 定期保存进度 |

安装

# 添加到你的 OpenCode 配置 (~/.config/opencode/opencode.json)
{
  "plugin": ["deco"]
}

配置

创建 .opencode/deco.json(项目级)或 ~/.config/opencode/deco.json(全局):

{
  "$schema": "https://raw.githubusercontent.com/TokenRollAI/deco/main/assets/deco.schema.json",
  "agents": {
    "conductor": { "model": "anthropic/claude-sonnet-4-5" },
    "scout": { "model": "opencode/grok-code" }
  },
  "disabled_agents": [],
  "disabled_hooks": [],
  "task": {
    "batchReviewThreshold": 3,
    "checkpointIntervalMs": 300000
  }
}

使用

安装后,Conductor 成为主要智能体。只需描述你的任务:

构建一个带有 JWT 令牌的用户认证 REST API

Conductor 将会:

  1. 创建 TASK 结构
  2. 分解为子任务
  3. 根据需要分配给 Coder、Scout、Reviewer
  4. 追踪进度直到完成

开发

# 安装依赖
bun install

# 类型检查
bun run typecheck

# 构建
bun run build

# 运行测试
bun test

License

MIT © DJJ