@disdjj/deco
v0.1.0
Published
Multi-agent AI coding system with TODO-driven task execution for OpenCode
Maintainers
Readme
🎭 Deco
Multi-Agent AI Coding System | 多智能体 AI 编程系统
English
What is Deco?
Deco is a TODO-driven multi-agent AI coding system built as a plugin for OpenCode. It orchestrates 8 specialized AI agents to complete software development tasks with persistent tracking that survives session interruptions.
Key Philosophy: The Conductor plans and delegates, specialized agents execute. Work never stops until all TODOs are complete.
Features
🎭 8 Specialized Agents
| Agent | Model | Role | |-------|-------|------| | Conductor | Claude Opus 4.5 | Orchestrator - plans, delegates, never writes code | | Coder | GPT-5.2 Codex | Backend, API, database, CLI | | Artist | Gemini 3 Pro | Frontend, UI, styling, components | | Scout | Claude Haiku 4 | Fast codebase exploration | | Researcher | Claude Sonnet 4.5 | External docs, OSS examples | | Architect | Gemini 3 Pro | System design, architecture decisions | | Reviewer | GPT-5.2 Codex | Code reviews (batch and final) | | Scribe | Gemini 3 Flash | Documentation |
📋 TASK Persistence System
Tasks are stored in llmdoc/tasks/ with full state:
llmdoc/tasks/active/{task-id}/
├── README.md # Overview and status
├── requirements.md # Requirements
├── plan.md # Technical plan
├── progress.json # Machine-readable state
├── subtasks/ # Individual subtasks
└── reviews/ # Code reviewsSession interrupted? No problem. Resume exactly where you left off.
🔄 TODO-Driven Execution
The iron law: never stop until done.
- Identify executable subtasks
- Dispatch to agents in parallel
- Monitor and update progress
- Trigger reviews at thresholds
- Archive on completion
🔌 3 Core Hooks
| Hook | Function |
|------|----------|
| todo-continuation | Forces completion of pending TODOs |
| task-driver | Drives TASK system execution |
| checkpoint | Saves progress periodically |
Installation
# Add to your OpenCode config (~/.config/opencode/opencode.json)
{
"plugin": ["@disdjj/deco"]
}Configuration
Create .opencode/deco.json (project) or ~/.config/opencode/deco.json (global):
{
"$schema": "https://raw.githubusercontent.com/TokenRollAI/deco/main/assets/deco.schema.json",
"agents": {
"conductor": { "model": "anthropic/claude-sonnet-4-5" },
"scout": { "model": "opencode/grok-code" }
},
"disabled_agents": [],
"disabled_hooks": [],
"task": {
"batchReviewThreshold": 3,
"checkpointIntervalMs": 300000
}
}Usage
Once installed, the Conductor becomes the primary agent. Simply describe your task:
Build a REST API for user authentication with JWT tokensThe Conductor will:
- Create a TASK structure
- Break down into subtasks
- Dispatch to Coder, Scout, Reviewer as needed
- Track progress until completion
Development
# Install dependencies
bun install
# Type check
bun run typecheck
# Build
bun run build
# Run tests
bun test中文
什么是 Deco?
Deco 是一个基于 TODO 驱动的多智能体 AI 编程系统,作为 OpenCode 的插件构建。它协调 8 个专业 AI 智能体来完成软件开发任务,并具有持久化追踪功能,即使会话中断也能恢复。
核心理念:Conductor 负责规划和分配,专业智能体负责执行。工作永不停止,直到所有 TODO 完成。
特性
🎭 8 个专业智能体
| 智能体 | 模型 | 职责 | |--------|------|------| | Conductor | Claude Opus 4.5 | 协调者 - 规划、分配,从不直接写代码 | | Coder | GPT-5.2 Codex | 后端、API、数据库、CLI | | Artist | Gemini 3 Pro | 前端、UI、样式、组件 | | Scout | Claude Haiku 4 | 快速代码库探索 | | Researcher | Claude Sonnet 4.5 | 外部文档、开源示例 | | Architect | Gemini 3 Pro | 系统设计、架构决策 | | Reviewer | GPT-5.2 Codex | 代码审查(批量和最终) | | Scribe | Gemini 3 Flash | 文档编写 |
📋 TASK 持久化系统
任务存储在 llmdoc/tasks/ 中,包含完整状态:
llmdoc/tasks/active/{task-id}/
├── README.md # 概述和状态
├── requirements.md # 需求文档
├── plan.md # 技术方案
├── progress.json # 机器可读的状态
├── subtasks/ # 子任务详情
└── reviews/ # 代码审查记录会话中断?没问题。 从上次离开的地方精确恢复。
🔄 TODO 驱动执行
铁律:永不停止,直到完成。
- 识别可执行的子任务
- 并行分配给智能体
- 监控并更新进度
- 在阈值触发审查
- 完成后归档
🔌 3 个核心 Hooks
| Hook | 功能 |
|------|------|
| todo-continuation | 强制完成待处理的 TODO |
| task-driver | 驱动 TASK 系统执行 |
| checkpoint | 定期保存进度 |
安装
# 添加到你的 OpenCode 配置 (~/.config/opencode/opencode.json)
{
"plugin": ["deco"]
}配置
创建 .opencode/deco.json(项目级)或 ~/.config/opencode/deco.json(全局):
{
"$schema": "https://raw.githubusercontent.com/TokenRollAI/deco/main/assets/deco.schema.json",
"agents": {
"conductor": { "model": "anthropic/claude-sonnet-4-5" },
"scout": { "model": "opencode/grok-code" }
},
"disabled_agents": [],
"disabled_hooks": [],
"task": {
"batchReviewThreshold": 3,
"checkpointIntervalMs": 300000
}
}使用
安装后,Conductor 成为主要智能体。只需描述你的任务:
构建一个带有 JWT 令牌的用户认证 REST APIConductor 将会:
- 创建 TASK 结构
- 分解为子任务
- 根据需要分配给 Coder、Scout、Reviewer
- 追踪进度直到完成
开发
# 安装依赖
bun install
# 类型检查
bun run typecheck
# 构建
bun run build
# 运行测试
bun testLicense
MIT © DJJ
