npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@dotdo/hyparquet-writer

v0.12.1

Published

Parquet file writer for JavaScript (dotdo fork with Variant support)

Readme

@dotdo/hyparquet-writer

hyparquet writer parakeet

npm minzipped workflow status mit license coverage dependencies

Hyparquet Writer is a JavaScript library for writing Apache Parquet files. It is designed to be lightweight, fast and store data very efficiently. This is the dotdo fork with Variant support. It is a companion to the @dotdo/hyparquet library, which is a JavaScript library for reading parquet files.

Quick Start

To write a parquet file to an ArrayBuffer use parquetWriteBuffer with argument columnData. Each column in columnData should contain:

  • name: the column name
  • data: an array of same-type values
  • type: the parquet schema type (optional)
import { parquetWriteBuffer } from '@dotdo/hyparquet-writer'

const arrayBuffer = parquetWriteBuffer({
  columnData: [
    { name: 'name', data: ['Alice', 'Bob', 'Charlie'], type: 'STRING' },
    { name: 'age', data: [25, 30, 35], type: 'INT32' },
  ],
})

Note: if type is not provided, the type will be guessed from the data. The supported BasicType are a superset of the parquet primitive types:

| Basic Type | Equivalent Schema Element | |------|----------------| | BOOLEAN | { type: 'BOOLEAN' } | | INT32 | { type: 'INT32' } | | INT64 | { type: 'INT64' } | | FLOAT | { type: 'FLOAT' } | | DOUBLE | { type: 'DOUBLE' } | | BYTE_ARRAY | { type: 'BYTE_ARRAY' } | | STRING | { type: 'BYTE_ARRAY', converted_type: 'UTF8' } | | JSON | { type: 'BYTE_ARRAY', converted_type: 'JSON' } | | TIMESTAMP | { type: 'INT64', converted_type: 'TIMESTAMP_MILLIS' } | | UUID | { type: 'FIXED_LEN_BYTE_ARRAY', type_length: 16, logical_type: { type: 'UUID' } } | | FLOAT16 | { type: 'FIXED_LEN_BYTE_ARRAY', type_length: 2, logical_type: { type: 'FLOAT16' } } | | GEOMETRY | { type: 'BYTE_ARRAY', logical_type: { type: 'GEOMETRY' } } | | GEOGRAPHY | { type: 'BYTE_ARRAY', logical_type: { type: 'GEOGRAPHY' } } |

More types are supported but require defining the schema explicitly. See the advanced usage section for more details.

Write to Local Parquet File (nodejs)

To write a local parquet file in node.js use parquetWriteFile with arguments filename and columnData:

const { parquetWriteFile } = await import('@dotdo/hyparquet-writer')

parquetWriteFile({
  filename: 'example.parquet',
  columnData: [
    { name: 'name', data: ['Alice', 'Bob', 'Charlie'], type: 'STRING' },
    { name: 'age', data: [25, 30, 35], type: 'INT32' },
  ],
})

Note: hyparquet-writer is published as an ES module, so dynamic import() may be required on the command line.

Advanced Usage

By default, hyparquet-writer generates parquet files that are optimized for large text datasets and fast previews. Parquet file parameters can be configured via options:

interface ParquetWriteOptions {
  writer: Writer // generic writer
  columnData: ColumnSource[]
  schema?: SchemaElement[] // explicit parquet schema
  codec?: CompressionCodec // compression codec (default 'SNAPPY')
  compressors?: Compressors // custom compressors (default includes snappy)
  statistics?: boolean // enable column statistics (default true)
  pageSize?: number // target page size in bytes (default 1 mb)
  rowGroupSize?: number | number[] // target row group size in rows (default [1000, 100000])
  kvMetadata?: { key: string; value?: string }[] // extra key-value metadata
}

Note: rowGroupSize can be either constant or an array of row group sizes, with the last size repeating. The default [1000, 100000] means the first row group will have 1000 rows, and all subsequent row groups will have 100,000 rows. This is optimized for fast previews of large datasets.

Per-column options:

interface ColumnSource {
  name: string
  data: DecodedArray
  type?: BasicType
  nullable?: boolean // allow nulls (default true)
  encoding?: Encoding // parquet encoding (PLAIN, RLE, DELTA_BINARY_PACKED, BYTE_STREAM_SPLIT, etc)
  columnIndex?: boolean // enable page-level column index (default false)
  offsetIndex?: boolean // enable page-level offset index (default true)
}

Example:

import { ByteWriter, parquetWrite } from '@dotdo/hyparquet-writer'
import { snappyCompress } from 'hysnappy'

const writer = new ByteWriter()
parquetWrite({
  writer,
  columnData: [
    { name: 'name', data: ['Alice', 'Bob', 'Charlie'] },
    { name: 'age', data: [25, 30, 35] },
    { name: 'dob', data: [new Date(1000000), new Date(2000000), new Date(3000000)] },
  ],
  // explicit schema:
  schema: [
    { name: 'root', num_children: 3 },
    { name: 'name', type: 'BYTE_ARRAY', converted_type: 'UTF8' },
    { name: 'age', type: 'FIXED_LEN_BYTE_ARRAY', type_length: 4, converted_type: 'DECIMAL', scale: 2, precision: 4 },
    { name: 'dob', type: 'INT32', converted_type: 'DATE' },
  ],
  compressors: { SNAPPY: snappyCompresss }, // high performance wasm compressor
  statistics: false, // disable statistics
  rowGroupSize: 1000000, // large row groups
  kvMetadata: [
    { key: 'key1', value: 'value1' },
    { key: 'key2', value: 'value2' },
  ],
})
const arrayBuffer = writer.getBuffer()

Column Types

Hyparquet-writer supports several ways to define the parquet schema. The simplest way is to provide basic types in the columnData elements.

If you don't provide types, the types will be auto-detected from the data. However, it is still recommended that you provide type information when possible. (zero rows would throw an exception, floats might be typed as int, etc)

Explicit Schema

You can provide your own parquet schema of type SchemaElement (see parquet-format):

import { ByteWriter, parquetWrite } from '@dotdo/hyparquet-writer'

const writer = new ByteWriter()
parquetWrite({
  writer,
  columnData: [
    { name: 'name', data: ['Alice', 'Bob', 'Charlie'] },
    { name: 'age', data: [25, 30, 35] },
  ],
  // explicit schema:
  schema: [
    { name: 'root', num_children: 2 },
    { name: 'name', type: 'BYTE_ARRAY', converted_type: 'UTF8', repetition_type: 'REQUIRED' },
    { name: 'age', type: 'INT32', repetition_type: 'REQUIRED' },
  ],
})

Schema Overrides

You can use mostly automatic schema detection, but override the schema for specific columns. This is useful if most of the column types can be automatically determined, but you want to use a specific schema element for one particular element.

const { ByteWriter, parquetWrite, schemaFromColumnData } = await import("@dotdo/hyparquet-writer")

// one unsigned and one signed int column
const columnData = [
  { name: 'unsigned_int', data: [1000000, 2000000] },
  { name: 'signed_int', data: [1000000, 2000000] },
]
const writer = new ByteWriter()
parquetWrite({
  writer,
  columnData,
  // override schema for unsigned_int column
  schema: schemaFromColumnData({
    columnData,
    schemaOverrides: {
      unsigned_int: {
        name: 'unsigned_int',
        type: 'INT32',
        converted_type: 'UINT_32',
        repetition_type: 'REQUIRED',
      },
    },
  }),
})

References

  • https://github.com/dot-do/hyparquet
  • https://github.com/dot-do/hyparquet-writer
  • https://github.com/hyparam/hyparquet-compressors
  • https://github.com/apache/parquet-format
  • https://github.com/apache/parquet-testing