npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@dqbd/tiktoken

v1.0.15

Published

JS/WASM bindings for tiktoken

Downloads

347,209

Readme

⏳ tiktoken

tiktoken is a BPE tokeniser for use with OpenAI's models, forked from the original tiktoken library to provide JS/WASM bindings for NodeJS and other JS runtimes.

This repository contains the following packages:

  • tiktoken (formally hosted at @dqbd/tiktoken): WASM bindings for the original Python library, providing full 1-to-1 feature parity.
  • js-tiktoken: Pure JavaScript port of the original library with the core functionality, suitable for environments where WASM is not well supported or not desired (such as edge runtimes).

Documentation for js-tiktoken can be found in here. Documentation for the tiktoken can be found here below.

The WASM version of tiktoken can be installed from NPM:

npm install tiktoken

Usage

Basic usage follows, which includes all the OpenAI encoders and ranks:

import assert from "node:assert";
import { get_encoding, encoding_for_model } from "tiktoken";

const enc = get_encoding("gpt2");
assert(
  new TextDecoder().decode(enc.decode(enc.encode("hello world"))) ===
    "hello world"
);

// To get the tokeniser corresponding to a specific model in the OpenAI API:
const enc = encoding_for_model("text-davinci-003");

// Extend existing encoding with custom special tokens
const enc = encoding_for_model("gpt2", {
  "<|im_start|>": 100264,
  "<|im_end|>": 100265,
});

// don't forget to free the encoder after it is not used
enc.free();

In constrained environments (eg. Edge Runtime, Cloudflare Workers), where you don't want to load all the encoders at once, you can use the lightweight WASM binary via tiktoken/lite.

const { Tiktoken } = require("tiktoken/lite");
const cl100k_base = require("tiktoken/encoders/cl100k_base.json");

const encoding = new Tiktoken(
  cl100k_base.bpe_ranks,
  cl100k_base.special_tokens,
  cl100k_base.pat_str
);
const tokens = encoding.encode("hello world");
encoding.free();

If you want to fetch the latest ranks, use the load function:

const { Tiktoken } = require("tiktoken/lite");
const { load } = require("tiktoken/load");
const registry = require("tiktoken/registry.json");
const models = require("tiktoken/model_to_encoding.json");

async function main() {
  const model = await load(registry[models["gpt-3.5-turbo"]]);
  const encoder = new Tiktoken(
    model.bpe_ranks,
    model.special_tokens,
    model.pat_str
  );
  const tokens = encoder.encode("hello world");
  encoder.free();
}

main();

If desired, you can create a Tiktoken instance directly with custom ranks, special tokens and regex pattern:

import { Tiktoken } from "../pkg";
import { readFileSync } from "fs";

const encoder = new Tiktoken(
  readFileSync("./ranks/gpt2.tiktoken").toString("utf-8"),
  { "<|endoftext|>": 50256, "<|im_start|>": 100264, "<|im_end|>": 100265 },
  "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)|\\s+"
);

Finally, you can a custom init function to override the WASM initialization logic for non-Node environments. This is useful if you are using a bundler that does not support WASM ESM integration.

import { get_encoding, init } from "tiktoken/init";

async function main() {
  const wasm = "..."; // fetch the WASM binary somehow
  await init((imports) => WebAssembly.instantiate(wasm, imports));

  const encoding = get_encoding("cl100k_base");
  const tokens = encoding.encode("hello world");
  encoding.free();
}

main();

Compatibility

As this is a WASM library, there might be some issues with specific runtimes. If you encounter any issues, please open an issue.

| Runtime | Status | Notes | | ---------------------------- | ------ | ------------------------------------------------------------------------------------------ | | Node.js | ✅ | | | Bun | ✅ | | | Vite | ✅ | See here for notes | | Next.js | ✅ | See here for notes | | Create React App (via Craco) | ✅ | See here for notes | | Vercel Edge Runtime | ✅ | See here for notes | | Cloudflare Workers | ✅ | See here for notes | | Electron | ✅ | See here for notes | | Deno | ❌ | Currently unsupported (see dqbd/tiktoken#22) | | Svelte + Cloudflare Workers | ❌ | Currently unsupported (see dqbd/tiktoken#37) |

For unsupported runtimes, consider using js-tiktoken, which is a pure JS implementation of the tokeniser.

Vite

If you are using Vite, you will need to add both the vite-plugin-wasm and vite-plugin-top-level-await. Add the following to your vite.config.js:

import wasm from "vite-plugin-wasm";
import topLevelAwait from "vite-plugin-top-level-await";
import { defineConfig } from "vite";

export default defineConfig({
  plugins: [wasm(), topLevelAwait()],
});

Next.js

Both API routes and /pages are supported with the following next.config.js configuration.

// next.config.json
const config = {
  webpack(config, { isServer, dev }) {
    config.experiments = {
      asyncWebAssembly: true,
      layers: true,
    };

    return config;
  },
};

Usage in pages:

import { get_encoding } from "tiktoken";
import { useState } from "react";

const encoding = get_encoding("cl100k_base");

export default function Home() {
  const [input, setInput] = useState("hello world");
  const tokens = encoding.encode(input);

  return (
    <div>
      <input
        type="text"
        value={input}
        onChange={(e) => setInput(e.target.value)}
      />
      <div>{tokens.toString()}</div>
    </div>
  );
}

Usage in API routes:

import { get_encoding } from "tiktoken";
import { NextApiRequest, NextApiResponse } from "next";

export default function handler(req: NextApiRequest, res: NextApiResponse) {
  const encoding = get_encoding("cl100k_base");
  const tokens = encoding.encode("hello world");
  encoding.free();
  return res.status(200).json({ tokens });
}

Create React App

By default, the Webpack configugration found in Create React App does not support WASM ESM modules. To add support, please do the following:

  1. Swap react-scripts with craco, using the guide found here: https://craco.js.org/docs/getting-started/.
  2. Add the following to craco.config.js:
module.exports = {
  webpack: {
    configure: (config) => {
      config.experiments = {
        asyncWebAssembly: true,
        layers: true,
      };

      // turn off static file serving of WASM files
      // we need to let Webpack handle WASM import
      config.module.rules
        .find((i) => "oneOf" in i)
        .oneOf.find((i) => i.type === "asset/resource")
        .exclude.push(/\.wasm$/);

      return config;
    },
  },
};

Vercel Edge Runtime

Vercel Edge Runtime does support WASM modules by adding a ?module suffix. Initialize the encoder with the following snippet:

// @ts-expect-error
import wasm from "tiktoken/lite/tiktoken_bg.wasm?module";
import model from "tiktoken/encoders/cl100k_base.json";
import { init, Tiktoken } from "tiktoken/lite/init";

export const config = { runtime: "edge" };

export default async function (req: Request) {
  await init((imports) => WebAssembly.instantiate(wasm, imports));

  const encoding = new Tiktoken(
    model.bpe_ranks,
    model.special_tokens,
    model.pat_str
  );

  const tokens = encoding.encode("hello world");
  encoding.free();

  return new Response(`${tokens}`);
}

Cloudflare Workers

Similar to Vercel Edge Runtime, Cloudflare Workers must import the WASM binary file manually and use the tiktoken/lite version to fit the 1 MB limit. However, users need to point directly at the WASM binary via a relative path (including ./node_modules/).

Add the following rule to the wrangler.toml to upload WASM during build:

[[rules]]
globs = ["**/*.wasm"]
type = "CompiledWasm"

Initialize the encoder with the following snippet:

import { init, Tiktoken } from "tiktoken/lite/init";
import wasm from "./node_modules/tiktoken/lite/tiktoken_bg.wasm";
import model from "tiktoken/encoders/cl100k_base.json";

export default {
  async fetch() {
    await init((imports) => WebAssembly.instantiate(wasm, imports));
    const encoder = new Tiktoken(
      model.bpe_ranks,
      model.special_tokens,
      model.pat_str
    );
    const tokens = encoder.encode("test");
    encoder.free();
    return new Response(`${tokens}`);
  },
};

Electron

To use tiktoken in your Electron main process, you need to make sure the WASM binary gets copied into your application package.

Assuming a setup with Electron Forge and @electron-forge/plugin-webpack, add the following to your webpack.main.config.js:

const CopyPlugin = require("copy-webpack-plugin");

module.exports = {
  // ...
  plugins: [
    new CopyPlugin({
      patterns: [
        { from: "./node_modules/tiktoken/tiktoken_bg.wasm" },
      ],
    }),
  ],
};

Development

To build the tiktoken library, make sure to have:

  • Rust and wasm-pack installed.
  • Node.js 18+ is required to build the JS bindings and fetch the latest encoder ranks via fetch.

Install all the dev-dependencies with yarn install and build both WASM binary and JS bindings with yarn build.

Acknowledgements

  • https://github.com/zurawiki/tiktoken-rs