@everworker/oneringai
v0.1.2
Published
Unified AI agent library with multi-vendor support for text generation, image generation, and agentic workflows
Maintainers
Readme
@everworker/oneringai
A unified AI agent library with multi-provider support for text generation, image/video generation, audio (TTS/STT), and agentic workflows.
Features
- ✨ Unified API - One interface for 10+ AI providers (OpenAI, Anthropic, Google, Groq, DeepSeek, and more)
- 🔑 Connector-First Architecture - Single auth system with support for multiple keys per vendor
- 📊 Model Registry - Complete metadata for 23+ latest (2026) models with pricing and features
- 🎤 Audio Capabilities - Text-to-Speech (TTS) and Speech-to-Text (STT) with OpenAI and Groq
- 🖼️ Image Generation - DALL-E 3, gpt-image-1, Google Imagen 4 with editing and variations
- 🎬 Video Generation - NEW: OpenAI Sora 2 and Google Veo 3 for AI video creation
- 🔍 Web Search - Connector-based search with Serper, Brave, Tavily, and RapidAPI providers
- 🔌 NextGen Context - Clean, plugin-based context management with
AgentContextNextGen - 🎛️ Dynamic Tool Management - Enable/disable tools at runtime, namespaces, priority-based selection
- 🔌 Tool Execution Plugins - NEW: Pluggable pipeline for logging, analytics, UI updates, custom behavior
- 💾 Session Persistence - Save and resume conversations with full state restoration
- 🤖 Universal Agent - ⚠️ Deprecated - Use
Agentwith plugins instead - 🤖 Task Agents - ⚠️ Deprecated - Use
AgentwithWorkingMemoryPluginNextGen - 🔬 Research Agent - ⚠️ Deprecated - Use
Agentwith search tools - 🎯 Context Management - Algorithmic compaction with tool-result-to-memory offloading
- 📌 InContextMemory - NEW: Live key-value storage directly in LLM context for instant access
- 📝 Persistent Instructions - NEW: Agent-level custom instructions that persist across sessions on disk
- 🛠️ Agentic Workflows - Built-in tool calling and multi-turn conversations
- 🔧 Developer Tools - NEW: Filesystem and shell tools for coding assistants (read, write, edit, grep, glob, bash)
- 🔌 MCP Integration - NEW: Model Context Protocol client for seamless tool discovery from local and remote servers
- 👁️ Vision Support - Analyze images with AI across all providers
- 📋 Clipboard Integration - Paste screenshots directly (like Claude Code!)
- 🔐 Scoped Connector Registry - NEW: Pluggable access control for multi-tenant connector isolation
- 🔐 OAuth 2.0 - Full OAuth support for external APIs with encrypted token storage
- 📦 Vendor Templates - NEW: Pre-configured auth templates for 43+ services (GitHub, Slack, Stripe, etc.)
- 🔄 Streaming - Real-time responses with event streams
- 📝 TypeScript - Full type safety and IntelliSense support
Quick Start
Installation
npm install @everworker/oneringaiBasic Usage
import { Connector, Agent, Vendor } from '@everworker/oneringai';
// 1. Create a connector (authentication)
Connector.create({
name: 'openai',
vendor: Vendor.OpenAI,
auth: { type: 'api_key', apiKey: process.env.OPENAI_API_KEY! },
});
// 2. Create an agent
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
});
// 3. Run
const response = await agent.run('What is the capital of France?');
console.log(response.output_text);
// Output: "The capital of France is Paris."With Tools
import { ToolFunction } from '@everworker/oneringai';
const weatherTool: ToolFunction = {
definition: {
type: 'function',
function: {
name: 'get_weather',
description: 'Get current weather',
parameters: {
type: 'object',
properties: {
location: { type: 'string' },
},
required: ['location'],
},
},
},
execute: async (args) => {
return { temp: 72, location: args.location };
},
};
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [weatherTool],
});
await agent.run('What is the weather in Paris?');Vision
import { createMessageWithImages } from '@everworker/oneringai';
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4o',
});
const response = await agent.run(
createMessageWithImages('What is in this image?', ['./photo.jpg'])
);Audio (NEW)
import { TextToSpeech, SpeechToText } from '@everworker/oneringai';
// Text-to-Speech
const tts = TextToSpeech.create({
connector: 'openai',
model: 'tts-1-hd',
voice: 'nova',
});
await tts.toFile('Hello, world!', './output.mp3');
// Speech-to-Text
const stt = SpeechToText.create({
connector: 'openai',
model: 'whisper-1',
});
const result = await stt.transcribeFile('./audio.mp3');
console.log(result.text);Image Generation (NEW)
import { ImageGeneration } from '@everworker/oneringai';
// OpenAI DALL-E
const imageGen = ImageGeneration.create({ connector: 'openai' });
const result = await imageGen.generate({
prompt: 'A futuristic city at sunset',
model: 'dall-e-3',
size: '1024x1024',
quality: 'hd',
});
// Save to file
const buffer = Buffer.from(result.data[0].b64_json!, 'base64');
await fs.writeFile('./output.png', buffer);
// Google Imagen
const googleGen = ImageGeneration.create({ connector: 'google' });
const googleResult = await googleGen.generate({
prompt: 'A colorful butterfly in a garden',
model: 'imagen-4.0-generate-001',
});Video Generation (NEW)
import { VideoGeneration } from '@everworker/oneringai';
// OpenAI Sora
const videoGen = VideoGeneration.create({ connector: 'openai' });
// Start video generation (async - returns a job)
const job = await videoGen.generate({
prompt: 'A cinematic shot of a sunrise over mountains',
model: 'sora-2',
duration: 8,
resolution: '1280x720',
});
// Wait for completion
const result = await videoGen.waitForCompletion(job.jobId);
// Download the video
const videoBuffer = await videoGen.download(job.jobId);
await fs.writeFile('./output.mp4', videoBuffer);
// Google Veo
const googleVideo = VideoGeneration.create({ connector: 'google' });
const veoJob = await googleVideo.generate({
prompt: 'A butterfly flying through a garden',
model: 'veo-3.0-generate-001',
duration: 8,
});Web Search
Connector-based web search with multiple providers:
import { Connector, SearchProvider, Services, webSearch, Agent } from '@everworker/oneringai';
// Create search connector
Connector.create({
name: 'serper-main',
serviceType: Services.Serper,
auth: { type: 'api_key', apiKey: process.env.SERPER_API_KEY! },
baseURL: 'https://google.serper.dev',
});
// Option 1: Use SearchProvider directly
const search = SearchProvider.create({ connector: 'serper-main' });
const results = await search.search('latest AI developments 2026', {
numResults: 10,
country: 'us',
language: 'en',
});
// Option 2: Use with Agent
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [webSearch],
});
await agent.run('Search for quantum computing news and summarize');Supported Search Providers:
- Serper - Google search via Serper.dev (2,500 free queries)
- Brave - Independent search index (privacy-focused)
- Tavily - AI-optimized search with summaries
- RapidAPI - Real-time web search (various pricing)
Web Scraping
Enterprise web scraping with automatic fallback and bot protection bypass:
import { Connector, ScrapeProvider, Services, webScrape, Agent } from '@everworker/oneringai';
// Create ZenRows connector for bot-protected sites
Connector.create({
name: 'zenrows',
serviceType: Services.Zenrows,
auth: { type: 'api_key', apiKey: process.env.ZENROWS_API_KEY! },
baseURL: 'https://api.zenrows.com/v1',
});
// Option 1: Use ScrapeProvider directly
const scraper = ScrapeProvider.create({ connector: 'zenrows' });
const result = await scraper.scrape('https://protected-site.com', {
includeMarkdown: true,
vendorOptions: {
jsRender: true, // JavaScript rendering
premiumProxy: true, // Residential IPs
},
});
// Option 2: Use webScrape tool with Agent
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [webScrape],
});
// webScrape auto-falls back: native → JS → API
await agent.run('Scrape https://example.com and summarize');Supported Scrape Providers:
- ZenRows - Enterprise scraping with JS rendering, residential proxies, anti-bot bypass
Supported Providers
| Provider | Text | Vision | TTS | STT | Image | Video | Tools | Context | |----------|------|--------|-----|-----|-------|-------|-------|---------| | OpenAI | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 128K | | Anthropic (Claude) | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | 200K | | Google (Gemini) | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | 1M | | Google Vertex AI | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | 1M | | Grok (xAI) | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | 128K | | Groq | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | 128K | | Together AI | ✅ | Some | ❌ | ❌ | ❌ | ❌ | ✅ | 128K | | DeepSeek | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | 64K | | Mistral | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | 32K | | Ollama | ✅ | Varies | ❌ | ❌ | ❌ | ❌ | ✅ | Varies | | Custom | ✅ | Varies | ❌ | ❌ | ❌ | ❌ | ✅ | Varies |
Key Features
1. Agent with Plugins
The Agent class is the primary agent type, supporting all features through composable plugins:
import { Agent, createFileContextStorage } from '@everworker/oneringai';
// Create storage for session persistence
const storage = createFileContextStorage('my-assistant');
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [weatherTool, emailTool],
context: {
features: {
workingMemory: true, // Store/retrieve data across turns
inContextMemory: true, // Key-value pairs directly in context
persistentInstructions: true, // Agent instructions that persist to disk
},
agentId: 'my-assistant',
storage,
},
});
// Run the agent
const response = await agent.run('Check weather and email me the report');
console.log(response.output_text);
// Save session for later
await agent.context.save('session-001');Features:
- 🔧 Plugin Architecture - Enable/disable features via
context.features - 💾 Session Persistence - Save/load full state with
ctx.save()andctx.load() - 📝 Working Memory - Store findings with automatic eviction
- 📌 InContextMemory - Key-value pairs visible directly to LLM
- 🔄 Persistent Instructions - Agent instructions that persist across sessions
2. Dynamic Tool Management (NEW)
Control tools at runtime. AgentContextNextGen is the single source of truth - agent.tools and agent.context.tools are the same ToolManager instance:
import { Agent } from '@everworker/oneringai';
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [weatherTool, emailTool, databaseTool],
});
// Disable tool temporarily
agent.tools.disable('database_tool');
// Enable later
agent.tools.enable('database_tool');
// UNIFIED ACCESS: Both paths access the same ToolManager
console.log(agent.tools === agent.context.tools); // true
// Changes via either path are immediately reflected
agent.context.tools.disable('email_tool');
console.log(agent.tools.listEnabled().includes('email_tool')); // false
// Context-aware selection
const selected = agent.tools.selectForContext({
mode: 'interactive',
priority: 'high',
});
// Backward compatible
agent.addTool(newTool); // Still works!
agent.removeTool('old_tool'); // Still works!3. Tool Execution Plugins (NEW)
Extend tool execution with custom behavior through a pluggable pipeline architecture. Add logging, analytics, UI updates, permission prompts, or any custom logic:
import { Agent, LoggingPlugin, type IToolExecutionPlugin } from '@everworker/oneringai';
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [weatherTool],
});
// Add built-in logging plugin
agent.tools.executionPipeline.use(new LoggingPlugin());
// Create a custom plugin
const analyticsPlugin: IToolExecutionPlugin = {
name: 'analytics',
priority: 100,
async beforeExecute(ctx) {
console.log(`Starting ${ctx.toolName}`);
},
async afterExecute(ctx, result) {
const duration = Date.now() - ctx.startTime;
trackToolUsage(ctx.toolName, duration);
return result; // Must return result (can transform it)
},
async onError(ctx, error) {
reportError(ctx.toolName, error);
return undefined; // Let error propagate (or return value to recover)
},
};
agent.tools.executionPipeline.use(analyticsPlugin);Plugin Lifecycle:
beforeExecute- Modify args, abort execution, or pass through- Tool execution
afterExecute- Transform results (runs in reverse priority order)onError- Handle/recover from errors
Plugin Context (PluginExecutionContext):
interface PluginExecutionContext {
toolName: string; // Name of the tool being executed
args: unknown; // Original arguments (read-only)
mutableArgs: unknown; // Modifiable arguments
metadata: Map<string, unknown>; // Share data between plugins
startTime: number; // Execution start timestamp
tool: ToolFunction; // The tool being executed
executionId: string; // Unique ID for this execution
}Built-in Plugins:
LoggingPlugin- Logs tool execution with timing and result summaries
Pipeline Management:
// Add plugin
agent.tools.executionPipeline.use(myPlugin);
// Remove plugin
agent.tools.executionPipeline.remove('plugin-name');
// Check if registered
agent.tools.executionPipeline.has('plugin-name');
// Get plugin
const plugin = agent.tools.executionPipeline.get('plugin-name');
// List all plugins
const plugins = agent.tools.executionPipeline.list();4. Session Persistence
Save and resume full context state including conversation history and plugin states:
import { AgentContextNextGen, createFileContextStorage } from '@everworker/oneringai';
// Create storage for the agent
const storage = createFileContextStorage('my-assistant');
// Create context with storage
const ctx = AgentContextNextGen.create({
model: 'gpt-4',
features: { workingMemory: true },
storage,
});
// Build up state
ctx.addUserMessage('Remember: my favorite color is blue');
await ctx.memory?.store('user_color', 'User favorite color', 'blue');
// Save session with metadata
await ctx.save('session-001', { title: 'User Preferences' });
// Later... load session
const ctx2 = AgentContextNextGen.create({ model: 'gpt-4', storage });
const loaded = await ctx2.load('session-001');
if (loaded) {
// Full state restored: conversation, plugin states, etc.
const color = await ctx2.memory?.retrieve('user_color');
console.log(color); // 'blue'
}What's Persisted:
- Complete conversation history
- All plugin states (WorkingMemory entries, InContextMemory, etc.)
- System prompt
Storage Location: ~/.oneringai/agents/<agentId>/sessions/<sessionId>.json
5. Working Memory
Use the WorkingMemoryPluginNextGen for agents that need to store and retrieve data:
import { Agent } from '@everworker/oneringai';
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [weatherTool, emailTool],
context: {
features: { workingMemory: true },
},
});
// Agent now has memory_store, memory_retrieve, memory_delete, memory_list tools
await agent.run('Check weather for SF and remember the result');Features:
- 📝 Working Memory - Store and retrieve data with priority-based eviction
- 🏗️ Hierarchical Memory - Raw → Summary → Findings tiers for research tasks
- 🧠 Context Management - Automatic handling of context limits
- 💾 Session Persistence - Save/load via
ctx.save()andctx.load()
6. Research with Search Tools
Use Agent with search tools and WorkingMemoryPluginNextGen for research workflows:
import { Agent, webSearch, SearchProvider, Connector, Services } from '@everworker/oneringai';
// Setup search connector
Connector.create({
name: 'serper-main',
serviceType: Services.Serper,
auth: { type: 'api_key', apiKey: process.env.SERPER_API_KEY! },
baseURL: 'https://google.serper.dev',
});
// Create agent with search and memory
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: [webSearch],
context: {
features: { workingMemory: true },
},
});
// Agent can search and store findings in memory
await agent.run('Research AI developments in 2026 and store key findings');Features:
- 🔍 Web Search - SearchProvider with Serper, Brave, Tavily, RapidAPI
- 📝 Working Memory - Store findings with priority-based eviction
- 🏗️ Tiered Memory - Raw → Summary → Findings pattern
6. Context Management
AgentContextNextGen is the modern, plugin-based context manager. It provides clean separation of concerns with composable plugins:
import { Agent, AgentContextNextGen } from '@everworker/oneringai';
// Option 1: Use AgentContextNextGen directly (standalone)
const ctx = AgentContextNextGen.create({
model: 'gpt-4',
systemPrompt: 'You are a helpful assistant.',
features: { workingMemory: true, inContextMemory: true },
});
ctx.addUserMessage('What is the weather in Paris?');
const { input, budget } = await ctx.prepare(); // Ready for LLM call
// Option 2: Via Agent.create
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
context: {
features: { workingMemory: true },
},
});
// Agent uses AgentContextNextGen internally
await agent.run('Check the weather');Feature Configuration
Enable/disable features independently. Disabled features = no associated tools registered:
// Minimal stateless agent (no memory)
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
context: {
features: { workingMemory: false }
}
});
// Full-featured agent with all plugins
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
context: {
features: {
workingMemory: true,
inContextMemory: true,
persistentInstructions: true
},
agentId: 'my-assistant', // Required for persistentInstructions
}
});Available Features:
| Feature | Default | Plugin | Associated Tools |
|---------|---------|--------|------------------|
| workingMemory | true | WorkingMemoryPluginNextGen | memory_store/retrieve/delete/list |
| inContextMemory | false | InContextMemoryPluginNextGen | context_set/delete/list |
| persistentInstructions | false | PersistentInstructionsPluginNextGen | instructions_set/get/append/clear |
AgentContextNextGen architecture:
- Plugin-first design - All features are composable plugins
- ToolManager - Tool registration, execution, circuit breakers
- Single system message - All context components combined
- Smart compaction - Happens once, right before LLM call
Compaction strategy:
- algorithmic (default) - Moves large tool results to Working Memory, limits tool pairs, applies rolling window. Triggers at 75% context usage.
Context preparation:
const { input, budget, compacted, compactionLog } = await ctx.prepare();
console.log(budget.totalUsed); // Total tokens used
console.log(budget.available); // Remaining tokens
console.log(budget.utilizationPercent); // Usage percentage7. InContextMemory
Store key-value pairs directly in context for instant LLM access without retrieval calls:
import { AgentContextNextGen } from '@everworker/oneringai';
const ctx = AgentContextNextGen.create({
model: 'gpt-4',
features: { inContextMemory: true },
plugins: {
inContextMemory: { maxEntries: 20 },
},
});
// Access the plugin
const plugin = ctx.getPlugin('in_context_memory');
// Store data - immediately visible to LLM
plugin.set('current_state', 'Task processing state', { step: 2, status: 'active' });
plugin.set('user_prefs', 'User preferences', { verbose: true }, 'high');
// LLM can use context_set/context_delete/context_list tools
// Or access directly via plugin API
const state = plugin.get('current_state'); // { step: 2, status: 'active' }Key Difference from WorkingMemory:
- WorkingMemory: External storage + index → requires
memory_retrieve()for values - InContextMemory: Full values in context → instant access, no retrieval needed
Use cases: Session state, user preferences, counters, flags, small accumulated results.
8. Persistent Instructions
Store agent-level custom instructions that persist across sessions on disk:
import { Agent } from '@everworker/oneringai';
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
context: {
agentId: 'my-assistant', // Required for storage path
features: {
persistentInstructions: true,
},
},
});
// LLM can now use instructions_set/append/get/clear tools
// Instructions persist to ~/.oneringai/agents/my-assistant/custom_instructions.mdKey Features:
- 📁 Disk Persistence - Instructions survive process restarts and sessions
- 🔧 LLM-Modifiable - Agent can update its own instructions during execution
- 🔄 Auto-Load - Instructions loaded automatically on agent start
- 🛡️ Never Compacted - Critical instructions always preserved in context
Available Tools:
instructions_set- Replace all custom instructionsinstructions_append- Add a new section to existing instructionsinstructions_get- Read current instructionsinstructions_clear- Remove all instructions (requires confirmation)
Use cases: Agent personality/behavior, user preferences, learned rules, tool usage patterns.
9. Direct LLM Access
Bypass all context management for simple, stateless LLM calls:
const agent = Agent.create({ connector: 'openai', model: 'gpt-4' });
// Direct call - no history tracking, no memory, no context preparation
const response = await agent.runDirect('What is 2 + 2?');
console.log(response.output_text); // "4"
// With options
const response = await agent.runDirect('Summarize this', {
instructions: 'Be concise',
temperature: 0.5,
maxOutputTokens: 100,
});
// Multimodal (text + image)
const response = await agent.runDirect([
{ type: 'message', role: 'user', content: [
{ type: 'input_text', text: 'What is in this image?' },
{ type: 'input_image', image_url: 'https://example.com/image.png' }
]}
]);
// Streaming
for await (const event of agent.streamDirect('Tell me a story')) {
if (event.type === 'output_text_delta') {
process.stdout.write(event.delta);
}
}Comparison:
| Aspect | run() / chat() | runDirect() |
|--------|-------------------|---------------|
| History tracking | ✅ | ❌ |
| Memory/Cache | ✅ | ❌ |
| Context preparation | ✅ | ❌ |
| Agentic loop (tool execution) | ✅ | ❌ |
| Overhead | Full context management | Minimal |
Use cases: Quick one-off queries, embeddings-like simplicity, testing, hybrid workflows.
11. Audio Capabilities
Text-to-Speech and Speech-to-Text with multiple providers:
import { TextToSpeech, SpeechToText } from '@everworker/oneringai';
// === Text-to-Speech ===
const tts = TextToSpeech.create({
connector: 'openai',
model: 'tts-1-hd', // or 'gpt-4o-mini-tts' for instruction steering
voice: 'nova',
});
// Synthesize to file
await tts.toFile('Hello, world!', './output.mp3');
// Synthesize with options
const audio = await tts.synthesize('Speak slowly', {
format: 'wav',
speed: 0.75,
});
// Introspection
const voices = await tts.listVoices();
const models = tts.listAvailableModels();
// === Speech-to-Text ===
const stt = SpeechToText.create({
connector: 'openai',
model: 'whisper-1', // or 'gpt-4o-transcribe'
});
// Transcribe
const result = await stt.transcribeFile('./audio.mp3');
console.log(result.text);
// With timestamps
const detailed = await stt.transcribeWithTimestamps(audioBuffer, 'word');
console.log(detailed.words); // [{ word, start, end }, ...]
// Translation
const english = await stt.translate(frenchAudio);Available Models:
- TTS: OpenAI (
tts-1,tts-1-hd,gpt-4o-mini-tts), Google (gemini-tts) - STT: OpenAI (
whisper-1,gpt-4o-transcribe), Groq (whisper-large-v3- 12x cheaper!)
12. Model Registry
Complete metadata for 23+ models:
import { getModelInfo, calculateCost, LLM_MODELS, Vendor } from '@everworker/oneringai';
// Get model information
const model = getModelInfo('gpt-5.2-thinking');
console.log(model.features.input.tokens); // 400000
console.log(model.features.input.cpm); // 1.75 (cost per million)
// Calculate costs
const cost = calculateCost('gpt-5.2-thinking', 50_000, 2_000);
console.log(`Cost: $${cost}`); // $0.1155
// With caching
const cachedCost = calculateCost('gpt-5.2-thinking', 50_000, 2_000, {
useCachedInput: true
});
console.log(`Cached: $${cachedCost}`); // $0.0293 (90% discount)Available Models:
- OpenAI (11): GPT-5.2 series, GPT-5 family, GPT-4.1, o3-mini
- Anthropic (5): Claude 4.5 series, Claude 4.x
- Google (7): Gemini 3, Gemini 2.5
13. Streaming
Real-time responses:
import { StreamHelpers } from '@everworker/oneringai';
for await (const text of StreamHelpers.textOnly(agent.stream('Hello'))) {
process.stdout.write(text);
}14. OAuth for External APIs
import { OAuthManager, FileStorage } from '@everworker/oneringai';
const oauth = new OAuthManager({
flow: 'authorization_code',
clientId: process.env.GITHUB_CLIENT_ID!,
clientSecret: process.env.GITHUB_CLIENT_SECRET!,
authorizationUrl: 'https://github.com/login/oauth/authorize',
tokenUrl: 'https://github.com/login/oauth/access_token',
storage: new FileStorage({ directory: './tokens' }),
});
const authUrl = await oauth.startAuthFlow('user123');15. Developer Tools
File system and shell tools for building coding assistants:
import { developerTools } from '@everworker/oneringai';
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: developerTools, // Includes all 7 tools
});
// Agent can now:
// - Read files (read_file)
// - Write files (write_file)
// - Edit files with surgical precision (edit_file)
// - Search files by pattern (glob)
// - Search content with regex (grep)
// - List directories (list_directory)
// - Execute shell commands (bash)
await agent.run('Read package.json and tell me the dependencies');
await agent.run('Find all TODO comments in the src directory');
await agent.run('Run npm test and report any failures');Available Tools:
- read_file - Read file contents with line numbers
- write_file - Create/overwrite files
- edit_file - Surgical find/replace edits
- glob - Find files by pattern (
**/*.ts) - grep - Search content with regex
- list_directory - List directory contents
- bash - Execute shell commands with safety guards
Safety Features:
- Blocked dangerous commands (
rm -rf /, fork bombs) - Configurable blocked directories (
node_modules,.git) - Timeout protection (default 2 min)
- Output truncation for large outputs
16. External API Integration
Connect your AI agents to 35+ external services with enterprise-grade resilience:
import { Connector, ConnectorTools, Services, Agent } from '@everworker/oneringai';
// Create a connector for an external service
Connector.create({
name: 'github',
serviceType: Services.Github,
auth: { type: 'api_key', apiKey: process.env.GITHUB_TOKEN! },
baseURL: 'https://api.github.com',
// Enterprise resilience features
timeout: 30000,
retry: { maxRetries: 3, baseDelayMs: 1000 },
circuitBreaker: { enabled: true, failureThreshold: 5 },
});
// Generate tools from the connector
// Tools are prefixed with connector name: github_api, github_list_repos, etc.
const tools = ConnectorTools.for('github');
// Use with an agent
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools: tools,
});
await agent.run('List all open issues in owner/repo');Supported Services (35+):
- Communication: Slack, Discord, Microsoft Teams, Twilio
- Development: GitHub, GitLab, Jira, Linear, Bitbucket
- Productivity: Notion, Asana, Monday, Airtable, Trello
- CRM: Salesforce, HubSpot, Zendesk, Intercom
- Payments: Stripe, PayPal, Square
- Cloud: AWS, Azure, GCP, DigitalOcean
- And more...
Enterprise Features:
- 🔄 Automatic retry with exponential backoff
- ⚡ Circuit breaker for failing services
- ⏱️ Configurable timeout
- 📊 Metrics tracking (requests, latency, success rate)
- 🔐 Protected auth headers (cannot be overridden)
// Direct fetch with connector
const connector = Connector.get('github');
const data = await connector.fetchJSON('/repos/owner/repo/issues');
// Metrics
const metrics = connector.getMetrics();
console.log(`Success rate: ${metrics.successCount / metrics.requestCount * 100}%`);Scoped Connector Registry (NEW)
Limit connector visibility by user, group, or tenant in multi-user systems:
import { Connector, ScopedConnectorRegistry } from '@everworker/oneringai';
import type { IConnectorAccessPolicy } from '@everworker/oneringai';
// Define an access policy
const policy: IConnectorAccessPolicy = {
canAccess: (connector, context) => {
const tags = connector.config.tags as string[] | undefined;
return !!tags && tags.includes(context.tenantId as string);
},
};
// Set the global policy
Connector.setAccessPolicy(policy);
// Create a scoped view for a specific tenant
const registry = Connector.scoped({ tenantId: 'acme-corp' });
// Only connectors tagged with 'acme-corp' are visible
registry.list(); // ['acme-openai', 'acme-slack']
registry.get('other-co'); // throws "not found" (no info leakage)
// Use with Agent
const agent = Agent.create({
connector: 'acme-openai',
model: 'gpt-4',
registry, // Agent resolves connectors through the scoped view
});
// Use with ConnectorTools
const tools = ConnectorTools.for('acme-slack', undefined, { registry });
const allTools = ConnectorTools.discoverAll(undefined, { registry });Features:
- Pluggable
IConnectorAccessPolicyinterface — bring your own access logic - Opaque context object (
{ userId, tenantId, roles, ... }) — library imposes no structure - Denied connectors get the same "not found" error — no information leakage
- Zero changes to existing API — scoping is entirely opt-in
- Works with
Agent.create(),ConnectorTools.for(), andConnectorTools.discoverAll()
Vendor Templates (NEW)
Quickly set up connectors for 43+ services with pre-configured authentication templates:
import {
createConnectorFromTemplate,
listVendors,
getVendorTemplate,
ConnectorTools
} from '@everworker/oneringai';
// List all available vendors
const vendors = listVendors();
// [{ id: 'github', name: 'GitHub', authMethods: ['pat', 'oauth-user', 'github-app'], ... }]
// Create connector from template (just provide credentials!)
const connector = createConnectorFromTemplate(
'my-github', // Connector name
'github', // Vendor ID
'pat', // Auth method
{ apiKey: process.env.GITHUB_TOKEN! }
);
// Get tools for the connector
const tools = ConnectorTools.for('my-github');
// Use with agent
const agent = Agent.create({
connector: 'openai',
model: 'gpt-4',
tools,
});
await agent.run('List my GitHub repositories');Supported Categories (43 vendors): | Category | Vendors | |----------|---------| | Communication | Slack, Discord, Telegram, Microsoft Teams | | Development | GitHub, GitLab, Bitbucket, Jira, Linear, Asana, Trello | | Productivity | Notion, Airtable, Google Workspace, Microsoft 365, Confluence | | CRM | Salesforce, HubSpot, Pipedrive | | Payments | Stripe, PayPal | | Cloud | AWS, GCP, Azure | | Storage | Dropbox, Box, Google Drive, OneDrive | | Email | SendGrid, Mailchimp, Postmark | | Monitoring | Datadog, PagerDuty, Sentry | | Search | Serper, Brave, Tavily, RapidAPI | | Scrape | ZenRows | | Other | Twilio, Zendesk, Intercom, Shopify |
Each vendor includes:
- Credentials setup URL - Direct link to where you create API keys
- Multiple auth methods - API keys, OAuth, service accounts
- Pre-configured URLs - Authorization, token endpoints pre-filled
- Common scopes - Recommended scopes for each auth method
See the User Guide for complete vendor reference.
Vendor Logos:
import { getVendorLogo, getVendorLogoSvg, getVendorColor } from '@everworker/oneringai';
// Get logo with metadata
const logo = getVendorLogo('github');
if (logo) {
console.log(logo.svg); // SVG content
console.log(logo.hex); // Brand color: "181717"
console.log(logo.isPlaceholder); // false (has official icon)
}
// Get just the SVG (with optional color override)
const svg = getVendorLogoSvg('slack', 'FFFFFF'); // White icon
// Get brand color
const color = getVendorColor('stripe'); // "635BFF"Tool Discovery with ToolRegistry
For UIs or tool inventory, use ToolRegistry to get all available tools:
import { ToolRegistry } from '@everworker/oneringai';
const allTools = ToolRegistry.getAllTools();
for (const tool of allTools) {
if (ToolRegistry.isConnectorTool(tool)) {
console.log(`API: ${tool.displayName} (${tool.connectorName})`);
} else {
console.log(`Built-in: ${tool.displayName}`);
}
}MCP (Model Context Protocol) Integration
Connect to MCP servers for automatic tool discovery and seamless integration:
import { MCPRegistry, Agent, Connector, Vendor } from '@everworker/oneringai';
// Setup authentication
Connector.create({
name: 'openai',
vendor: Vendor.OpenAI,
auth: { type: 'api_key', apiKey: process.env.OPENAI_API_KEY! },
});
// Connect to local MCP server (stdio)
const fsClient = MCPRegistry.create({
name: 'filesystem',
transport: 'stdio',
transportConfig: {
command: 'npx',
args: ['-y', '@modelcontextprotocol/server-filesystem', process.cwd()],
},
});
// Connect to remote MCP server (HTTP/HTTPS)
const remoteClient = MCPRegistry.create({
name: 'remote-api',
transport: 'https',
transportConfig: {
url: 'https://mcp.example.com/api',
token: process.env.MCP_TOKEN,
},
});
// Connect and discover tools
await fsClient.connect();
await remoteClient.connect();
// Create agent and register MCP tools
const agent = Agent.create({ connector: 'openai', model: 'gpt-4' });
fsClient.registerTools(agent.tools);
remoteClient.registerTools(agent.tools);
// Agent can now use tools from both MCP servers!
await agent.run('List files and analyze them');Features:
- 🔌 Stdio & HTTP/HTTPS transports - Local and remote server support
- 🔍 Automatic tool discovery - Tools are discovered and registered automatically
- 🏷️ Namespaced tools -
mcp:{server}:{tool}prevents conflicts - 🔄 Auto-reconnect - Exponential backoff with configurable retry
- 📊 Session management - Persistent connections with session IDs
- 🔐 Permission integration - All MCP tools require user approval
- ⚙️ Configuration file - Declare servers in
oneringai.config.json
Available MCP Servers:
- @modelcontextprotocol/server-filesystem - File system access
- @modelcontextprotocol/server-github - GitHub API
- @modelcontextprotocol/server-google-drive - Google Drive
- @modelcontextprotocol/server-slack - Slack integration
- @modelcontextprotocol/server-postgres - PostgreSQL database
- And many more...
See MCP_INTEGRATION.md for complete documentation.
Documentation
📖 Complete User Guide - Comprehensive guide covering all features
Additional Resources
- MCP_INTEGRATION.md - Model Context Protocol integration guide
- CLAUDE.md - Architecture guide for AI assistants
- MULTIMODAL_ARCHITECTURE.md - Multimodal implementation details
- MICROSOFT_GRAPH_SETUP.md - Microsoft Graph OAuth setup
- TESTING.md - Testing guide for contributors
Examples
# Basic examples
npm run example:basic # Simple text generation
npm run example:streaming # Streaming responses
npm run example:vision # Image analysis
npm run example:tools # Tool calling
# Audio examples
npm run example:audio # TTS and STT demo
# Task Agent examples
npm run example:task-agent # Basic task agent
npm run example:task-agent-demo # Full demo with memory
npm run example:planning-agent # AI-driven planning
# Context management
npm run example:context-management # All strategies demoDevelopment
# Install dependencies
npm install
# Build
npm run build
# Watch mode
npm run dev
# Run tests
npm test
# Type check
npm run typecheckArchitecture
The library uses Connector-First Architecture:
User Code → Connector Registry → Agent → Provider → LLMBenefits:
- ✅ Single source of truth for authentication
- ✅ Multiple keys per vendor
- ✅ Named connectors for easy reference
- ✅ No API key management in agent code
- ✅ Same pattern for AI providers AND external APIs
- ✅ Scoped registry for multi-tenant access control
Troubleshooting
"Connector not found"
Make sure you created the connector with Connector.create() before using it.
"Invalid API key"
Check your .env file and ensure the key is correct for that vendor.
"Model not found"
Each vendor has different model names. Check the User Guide for supported models.
Vision not working
Use a vision-capable model: gpt-4o, claude-opus-4-5-20251101, gemini-3-flash-preview.
Contributing
Contributions are welcome! Please see our Contributing Guide (coming soon).
License
MIT License - See LICENSE file.
Version: 0.1.2 Last Updated: 2026-02-06
For detailed documentation on all features, see the Complete User Guide.
For internal development and architecture improvement plans, see IMPROVEMENT_PLAN.md.
