@fastmcp-me/ai-vision-mcp
v0.0.2
Published
Vision MCP server that provides AI-powered image and video analysis using Google Gemini and Vertex AI
Maintainers
Readme
AI Vision MCP Server
A powerful Model Context Protocol (MCP) server that provides AI-powered image and video analysis using Google Gemini and Vertex AI models.
Features
- Dual Provider Support: Choose between Google Gemini API and Vertex AI
- Multimodal Analysis: Support for both image and video content analysis
- Flexible File Handling: Upload via multiple methods (URLs, local files, base64)
- Storage Integration: Built-in Google Cloud Storage support
- Comprehensive Validation: Zod-based data validation throughout
- Error Handling: Robust error handling with retry logic and circuit breakers
- TypeScript: Full TypeScript support with strict type checking
Quick Start
Pre-requisites
You could choose either to use google provider or vertex_ai provider. For simplicity, google provider is recommended.
Below are the environment variables required to set, depending to the provider you have selected.
(i) Using Google AI Studio Provider
export IMAGE_PROVIDER="google" # or vertex_ai
export VIDEO_PROVIDER="google" # or vertex_ai
export GEMINI_API_KEY="your-gemini-api-key"Get your Google AI Studio's api key here
(ii) Using Vertex AI Provider
export IMAGE_PROVIDER="vertex_ai"
export VIDEO_PROVIDER="vertex_ai"
export VERTEX_CREDENTIALS="/path/to/service-account.json"
export GCS_BUCKET_NAME="your-gcs-bucket"Refer to the guideline here on how to set this up.
Installation
Below are the installation guide for this MCP on different MCP clients, such as Claude Desktop, Claude Code, Cursor, etc.
Add to your Claude Desktop configuration:
(i) Using Google AI Studio Provider
{
"mcpServers": {
"ai-vision-mcp": {
"command": "npx",
"args": ["ai-vision-mcp"],
"env": {
"IMAGE_PROVIDER": "google",
"VIDEO_PROVIDER": "google",
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}(ii) Using Vertex AI Provider
{
"mcpServers": {
"ai-vision-mcp": {
"command": "npx",
"args": ["ai-vision-mcp"],
"env": {
"IMAGE_PROVIDER": "vertex_ai",
"VIDEO_PROVIDER": "vertex_ai",
"VERTEX_CREDENTIALS": "/path/to/service-account.json",
"GCS_BUCKET_NAME": "ai-vision-mcp-{VERTEX_PROJECT_ID}"
}
}
}
}(i) Using Google AI Studio Provider
claude mcp add ai-vision-mcp \
-e IMAGE_PROVIDER=google \
-e VIDEO_PROVIDER=google \
-e GEMINI_API_KEY=your-gemini-api-key \
-- npx ai-vision-mcp(ii) Using Vertex AI Provider
claude mcp add ai-vision-mcp \
-e IMAGE_PROVIDER=vertex_ai \
-e VIDEO_PROVIDER=vertex_ai \
-e VERTEX_CREDENTIALS=/path/to/service-account.json \
-e GCS_BUCKET_NAME=ai-vision-mcp-{VERTEX_PROJECT_ID} \
-- npx ai-vision-mcpNote: Increase the MCP tool timeout to about 5 minutes by updating ~\.claude\settings.json as follows:
{
"env": {
"MCP_TIMEOUT": "20000", // Give the MCP server 20s to start.
"MCP_TOOL_TIMEOUT": "300000" // Allow each tool calls before timeout.
}
}Go to: Settings -> Cursor Settings -> MCP -> Add new global MCP server
Pasting the following configuration into your Cursor ~/.cursor/mcp.json file is the recommended approach. You may also install in a specific project by creating .cursor/mcp.json in your project folder. See Cursor MCP docs for more info.
(i) Using Google AI Studio Provider
{
"mcpServers": {
"ai-vision-mcp": {
"command": "npx",
"args": ["ai-vision-mcp"],
"env": {
"IMAGE_PROVIDER": "google",
"VIDEO_PROVIDER": "google",
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}(ii) Using Vertex AI Provider
{
"mcpServers": {
"ai-vision-mcp": {
"command": "npx",
"args": ["ai-vision-mcp"],
"env": {
"IMAGE_PROVIDER": "vertex_ai",
"VIDEO_PROVIDER": "vertex_ai",
"VERTEX_CREDENTIALS": "/path/to/service-account.json",
"GCS_BUCKET_NAME": "ai-vision-mcp-{VERTEX_PROJECT_ID}"
}
}
}
}Cline uses a JSON configuration file to manage MCP servers. To integrate the provided MCP server configuration:
- Open Cline and click on the MCP Servers icon in the top navigation bar.
- Select the Installed tab, then click Advanced MCP Settings.
- In the cline_mcp_settings.json file, add the following configuration:
(i) Using Google AI Studio Provider
{
"mcpServers": {
"timeout": 300,
"type": "stdio",
"ai-vision-mcp": {
"command": "npx",
"args": ["ai-vision-mcp"],
"env": {
"IMAGE_PROVIDER": "google",
"VIDEO_PROVIDER": "google",
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}(ii) Using Vertex AI Provider
{
"mcpServers": {
"ai-vision-mcp": {
"timeout": 300,
"type": "stdio",
"command": "npx",
"args": ["ai-vision-mcp"],
"env": {
"IMAGE_PROVIDER": "vertex_ai",
"VIDEO_PROVIDER": "vertex_ai",
"VERTEX_CREDENTIALS": "/path/to/service-account.json",
"GCS_BUCKET_NAME": "ai-vision-mcp-{VERTEX_PROJECT_ID}"
}
}
}
}The server uses stdio transport and follows the standard MCP protocol. It can be integrated with any MCP-compatible client by running:
npx ai-vision-mcpMCP Tools
The server provides three main MCP tools:
1) analyze_image
Analyzes an image using AI and returns a detailed description.
Parameters:
imageSource(string): URL, base64 data, or file path to the imageprompt(string): Question or instruction for the AIoptions(object, optional): Analysis options including temperature and max tokens
Examples:
- Analyze image from URL:
{
"imageSource": "https://plus.unsplash.com/premium_photo-1710965560034-778eedc929ff",
"prompt": "What is this image about? Describe what you see in detail."
}- Analyze local image file:
{
"imageSource": "C:\\Users\\username\\Downloads\\image.jpg",
"prompt": "What is this image about? Describe what you see in detail."
}2) compare_images
Compares multiple images using AI and returns a detailed comparison analysis.
Parameters:
imageSources(array): Array of image sources (URLs, base64 data, or file paths) - minimum 2, maximum 4 imagesprompt(string): Question or instruction for comparing the imagesoptions(object, optional): Analysis options including temperature and max tokens
Examples:
- Compare images from URLs:
{
"imageSources": [
"https://example.com/image1.jpg",
"https://example.com/image2.jpg"
],
"prompt": "Compare these two images and tell me the differences"
}- Compare mixed sources:
{
"imageSources": [
"https://example.com/image1.jpg",
"C:\\\\Users\\\\username\\\\Downloads\\\\image2.jpg",
"..."
],
"prompt": "Which image has the best lighting quality?"
}3) analyze_video
Analyzes a video using AI and returns a detailed description.
Parameters:
videoSource(string): YouTube URL, GCS URI, or local file path to the videoprompt(string): Question or instruction for the AIoptions(object, optional): Analysis options including temperature and max tokens
Supported video sources:
- YouTube URLs (e.g.,
https://www.youtube.com/watch?v=...) - Local file paths (e.g.,
C:\Users\username\Downloads\video.mp4)
Examples:
- Analyze video from YouTube URL:
{
"videoSource": "https://www.youtube.com/watch?v=9hE5-98ZeCg",
"prompt": "What is this video about? Describe what you see in detail."
}- Analyze local video file:
{
"videoSource": "C:\\Users\\username\\Downloads\\video.mp4",
"prompt": "What is this video about? Describe what you see in detail."
}Note: Only YouTube URLs are supported for public video URLs. Other public video URLs are not currently supported.
Configuration
Environment Variables
| Variable | Required | Description | Default |
|-----------|-----------|-------------|---------|
| Provider Selection ||||
| IMAGE_PROVIDER | Yes | Provider for image analysis | google,vertex_ai |
| VIDEO_PROVIDER | Yes | Provider for video analysis | google,vertex_ai |
| Model Selection ||||
| IMAGE_MODEL | No | Model for image analysis | gemini-2.5-flash-lite |
| VIDEO_MODEL | No | Model for video analysis | gemini-2.5-flash |
| FALLBACK_IMAGE_MODEL | No | Fallback Model for image analysis | gemini-2.5-flash-lite |
| FALLBACK_VIDEO_MODEL | No | Fallback Model for video analysis | gemini-2.5-flash |
| Google Gemini API ||||
| GEMINI_API_KEY | Yes if IMAGE_PROVIDER or VIDEO_PROVIDER = google | Google Gemini API key | Required for Gemini |
| GEMINI_BASE_URL | No | Gemini API base URL | https://generativelanguage.googleapis.com |
| Vertex AI ||||
| VERTEX_CREDENTIALS | Yes if IMAGE_PROVIDER or VIDEO_PROVIDER = vertex_ai | Path to GCP service account JSON | Required for Vertex AI |
| VERTEX_PROJECT_ID | Auto | Google Cloud project ID | Auto-derived from credentials |
| VERTEX_LOCATION | No | Vertex AI region | us-central1 |
| VERTEX_ENDPOINT | No | Vertex AI endpoint URL | https://aiplatform.googleapis.com |
| Google Cloud Storage (Vertex AI) ||||
| GCS_BUCKET_NAME | If IMAGE_PROVIDER or VIDEO_PROVIDER = vertex_ai | GCS bucket name for Vertex AI uploads | Required for Vertex AI |
| GCS_CREDENTIALS | No | Path to GCS credentials | Defaults to VERTEX_CREDENTIALS |
| GCS_PROJECT_ID | No | GCS project ID | Auto-derived from VERTEX_CREDENTIALS |
| GCS_REGION | No | GCS region | Defaults to VERTEX_LOCATION |
| API Configuration ||||
| TEMPERATURE | No | AI response temperature (0.0–2.0) | 0.2 |
| TOP_P | No | Top-p sampling parameter (0.0–1.0) | 0.95 |
| TOP_K | No | Top-k sampling parameter (1–100) | 30 |
| MAX_TOKEN | No | Maximum tokens for analysis (1–8192) | 800 |
| TEMPERATURE_FOR_IMAGE | No | Image-specific temperature (0.0–2.0) | Uses TEMPERATURE |
| TOP_P_FOR_IMAGE | No | Image-specific top-p (0.0–1.0) | Uses TOP_P |
| TOP_K_FOR_IMAGE | No | Image-specific top-k (1–100) | Uses TOP_K |
| TEMPERATURE_FOR_VIDEO | No | Video-specific temperature (0.0–2.0) | Uses TEMPERATURE |
| TOP_P_FOR_VIDEO | No | Video-specific top-p (0.0–1.0) | Uses TOP_P |
| TOP_K_FOR_VIDEO | No | Video-specific top-k (1–100) | Uses TOP_K |
| MAX_TOKENS_FOR_IMAGE | No | Maximum tokens for image analysis | Uses MAX_TOKEN |
| MAX_TOKENS_FOR_VIDEO | No | Maximum tokens for video analysis | Uses MAX_TOKEN |
| File Processing ||||
| MAX_IMAGE_SIZE | No | Maximum image size in bytes | 20971520 (20 MB) |
| MAX_VIDEO_SIZE | No | Maximum video size in bytes | 2147483648 (2 GB) |
| MAX_VIDEO_DURATION | No | Maximum video duration (seconds) | 3600 (1 hour) |
| MAX_IMAGES_FOR_COMPARISON | No | Maximum number of images for comparison, used by compare_images() mcp function | 4 |
| ALLOWED_IMAGE_FORMATS | No | Comma-separated image formats | png,jpg,jpeg,webp,gif,bmp,tiff |
| ALLOWED_VIDEO_FORMATS | No | Comma-separated video formats | mp4,mov,avi,mkv,webm,flv,wmv,3gp |
| Development ||||
| LOG_LEVEL | No | Logging level | info |
| NODE_ENV | No | Environment mode | development |
| GEMINI_FILES_API_THRESHOLD | No | Size threshold for Gemini Files API (bytes) | 10485760 (10 MB) |
| VERTEX_AI_FILES_API_THRESHOLD | No | Size threshold for Vertex AI uploads (bytes) | 0 |
The environment variables follow a layered priority system that determines which values take effect during runtime.
Priority Order (highest to lowest):
- LLM-assigned values - Parameters passed directly in tool calls (e.g.,
{"temperature": 0.1}) - Task-specific variables -
TEMPERATURE_FOR_IMAGE,MAX_TOKENS_FOR_VIDEO, etc. - Universal variables -
TEMPERATURE,MAX_TOKEN, etc. - System defaults - Built-in fallback values
Example Usage:
# Universal configuration
TEMPERATURE=0.3
MAX_TOKEN=600
# Task-specific overrides
TEMPERATURE_FOR_IMAGE=0.1 # More precise for image analysis
MAX_TOKENS_FOR_VIDEO=1200 # Longer responses for video content
# LLM can still override at runtime via tool parametersThis allows you to set sensible defaults while maintaining granular control per task type.
Development
Prerequisites
- Node.js 18+
- npm or yarn
Setup
# Clone the repository
git clone https://github.com/tan-yong-sheng/ai-vision-mcp.git
cd ai-vision-mcp
# Install dependencies
npm install
# Build the project
npm run build
# Start development server
npm run devScripts
npm run build- Build the TypeScript projectnpm run dev- Start development server with watch modenpm run lint- Run ESLintnpm run format- Format code with Prettiernpm start- Start the built server
Architecture
The project follows a modular architecture:
src/
├── providers/ # AI provider implementations
│ ├── gemini/ # Google Gemini provider
│ ├── vertexai/ # Vertex AI provider
│ └── factory/ # Provider factory
├── services/ # Core services
│ ├── ConfigService.ts
│ └── FileService.ts
├── storage/ # Storage implementations
├── file-upload/ # File upload strategies
├── types/ # TypeScript type definitions
├── utils/ # Utility functions
└── server.ts # Main MCP serverError Handling
The server includes comprehensive error handling:
- Validation Errors: Input validation using Zod schemas
- Network Errors: Automatic retries with exponential backoff
- Authentication Errors: Clear error messages for API key issues
- File Errors: Handling for file size limits and format restrictions
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Google for the Gemini and Vertex AI APIs
- The Model Context Protocol team for the MCP framework
- All contributors and users of this project
