@fideus-labs/ngff-zarr
v0.2.0
Published
TypeScript implementation of ngff-zarr for reading and writing OME-Zarr files
Maintainers
Readme
ngff-zarr
A multi-language implementation of the Open Microscopy Environment (OME) Next Generation File Format (NGFF) Zarr specification.
Repository Structure
This repository contains multiple packages implementing NGFF-Zarr support:
py/- Python package (ngff-zarr) - A lean and kind NGFF-Zarr implementationmcp/- Model Context Protocol (MCP) server (ngff-zarr-mcp) for AI integration- TypeScript package - Coming soon
Python Package (py/)
The main Python package provides:
✨ Features
- Minimal dependencies
- Work with arbitrary Zarr store types
- Lazy, parallel, and web ready -- no local filesystem required
- Process extremely large datasets
- Conversion of most bioimaging file formats
- Multiple downscaling methods
- Supports Python>=3.9
- Reads OME-Zarr v0.1 to v0.5 into simple Python data classes with Dask arrays
- Optional OME-Zarr data model validation during reading
- Writes OME-Zarr v0.4 to v0.5
- Sharded Zarr stores
- Optional writing via zarr-python 2, zarr-python 3, tensorstore or zarrita (TypeScript)
- Anatomical orientation metadata (RFC-4)
- OME-Zarr Zip (.ozx) file support for single-file OME-Zarr datasets (RFC-9)
- High Content Screening (HCS) support for plate and well data
- Model Context Protocol (MCP) server for AI agent integration
📖 Documentation
More information about command line usage, the Python API, library features, and how to contribute can be found in our documentation.
MCP Server (mcp/)
The Model Context Protocol server enables AI assistants like Claude to interact with NGFF-Zarr files. See the MCP documentation for setup and usage instructions.
See also
- ome-zarr-py
- multiscale-spatial-image
- itk-ioomezarrngff
- iohub
- pydantic-ome-ngff
- aicsimageio
- bfio
- zod-ome-ngff
License
ngff-zarr is distributed under the terms of the
MIT license.
