@flowrag/provider-gemini
v0.0.1
Published
Gemini AI provider for FlowRAG - embeddings and entity extraction
Maintainers
Readme
@flowrag/provider-gemini
Gemini AI provider for FlowRAG - embeddings and entity extraction.
Installation
npm install @flowrag/provider-geminiUsage
Embedder
import { GeminiEmbedder } from '@flowrag/provider-gemini';
const embedder = new GeminiEmbedder({
apiKey: 'your-gemini-api-key', // or set GEMINI_API_KEY env var
model: 'text-embedding-004', // optional, default
});
// Single embedding
const embedding = await embedder.embed('Hello world');
// Batch embeddings
const embeddings = await embedder.embedBatch(['Hello', 'World']);Extractor
import { GeminiExtractor } from '@flowrag/provider-gemini';
import { defineSchema } from '@flowrag/core';
const extractor = new GeminiExtractor({
apiKey: 'your-gemini-api-key', // or set GEMINI_API_KEY env var
model: 'gemini-2.0-flash-exp', // optional, default
temperature: 0.1, // optional, default
});
const schema = defineSchema({
entityTypes: ['SERVICE', 'DATABASE'],
relationTypes: ['USES', 'PRODUCES'],
});
const result = await extractor.extractEntities(
'ServiceA connects to DatabaseB',
['ServiceC'], // known entities
schema
);Environment Variables
GEMINI_API_KEY=your-api-keyLicense
MIT
