npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@getprofile/sdk-js

v0.1.0

Published

JavaScript/TypeScript SDK for GetProfile - Build personalized AI experiences with user profiles, traits, and memories

Readme

@getprofile/sdk-js

Official JavaScript/TypeScript SDK for GetProfile - Drop-in OpenAI replacement with automatic personalization using user profiles, traits, and memories.

npm version License: MIT

Features

  • 🔄 OpenAI Compatible: Drop-in replacement for OpenAI SDK with automatic profile context injection
  • 🎯 Automatic Personalization: User context automatically injected into chat completions
  • ⚡ Lightweight & Fast: Fully typed TypeScript SDK with zero runtime dependencies (16KB minified)
  • 🧠 Smart Memory: Automatically extracts and recalls user preferences, facts, and context
  • 📊 Profile Management: Create and manage user profiles with traits and memories
  • 🏭 Production Ready: Robust error handling, automatic retries, and comprehensive test coverage

Installation

npm install @getprofile/sdk-js
pnpm add @getprofile/sdk-js
yarn add @getprofile/sdk-js

Quick Start: OpenAI-Compatible Chat

The simplest way to use GetProfile is as a drop-in replacement for the OpenAI SDK. Just pass a user parameter and GetProfile automatically injects relevant user context.

import { GetProfileClient } from "@getprofile/sdk-js";

const client = new GetProfileClient({
  apiKey: "your-api-key", // Your GetProfile server API key
});

// Just like OpenAI, but with automatic personalization
const completion = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "What should I work on today?" }],
  user: "user-123", // GetProfile automatically injects this user's context
});

console.log(completion.choices[0].message.content);
// Response will be personalized based on user's preferences, history, and traits

Streaming Responses

const stream = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "Help me plan my week" }],
  stream: true,
  user: "user-123",
});

for await (const chunk of stream) {
  const content = chunk.choices[0]?.delta?.content || "";
  process.stdout.write(content);
}

API Reference

Client Initialization

const client = new GetProfileClient({
  apiKey: 'your-api-key',           // Required: Your API key
  baseUrl?: 'https://api.yourserver.com', // Optional: Custom base URL
  timeout?: 30000,                   // Optional: Request timeout in ms
  retries?: 1,                       // Optional: Number of retry attempts
  retryDelayMs?: 250,                // Optional: Initial retry delay
  fetch?: customFetch,               // Optional: Custom fetch implementation
  defaultHeaders?: {},               // Optional: Additional headers
});

Chat Completions (OpenAI Compatible)

GetProfile's chat API is fully compatible with OpenAI's API. Simply pass a user parameter to automatically inject personalized context.

Non-Streaming

const completion = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [
    { role: "system", content: "You are a helpful assistant." },
    { role: "user", content: "What are my preferences?" },
  ],
  user: "user-123", // Automatically injects relevant profile context
  // All standard OpenAI parameters supported
});

console.log(completion.choices[0].message.content);

Streaming

const stream = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "Write me a personalized workout plan" }],
  stream: true,
  user: "user-123",
});

for await (const chunk of stream) {
  const content = chunk.choices[0]?.delta?.content || "";
  process.stdout.write(content);
}

Supported Parameters

All standard OpenAI chat completion parameters are supported:

  • model - Model to use (e.g., 'gpt-5-mini', 'gpt-5', 'gpt-4-turbo')
  • messages - Array of chat messages
  • user - User identifier for automatic profile context injection
  • temperature, top_p, frequency_penalty, presence_penalty
  • max_tokens, stop
  • stream - Enable streaming responses

Advanced: Controlling Extraction and Injection

You can control what gets extracted from conversations and what context gets injected per request:

// Skip context injection for this request (still extracts by default)
const completion = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "Hello!" }],
  user: "user-123",
  getprofile: {
    skipInjection: true,
  },
});

// Skip extraction for this request (still injects context)
const completion = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "Casual chat..." }],
  user: "user-123",
  getprofile: {
    skipExtraction: true,
  },
});

// Skip both extraction and injection (raw OpenAI request)
const completion = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "Generic query" }],
  user: "user-123",
  getprofile: {
    skipInjection: true,
    skipExtraction: true,
  },
});

// Override trait extraction/injection for specific request
const completion = await client.chat.completions.create({
  model: "gpt-5-mini",
  messages: [{ role: "user", content: "Help me plan my trip" }],
  user: "user-123",
  getprofile: {
    traits: [
      {
        key: "travel_preferences",
        valueType: "object",
        extraction: {
          enabled: true,
          promptSnippet:
            "Extract travel preferences like destinations, budget, travel style",
        },
        injection: {
          enabled: true,
          template: "User travel preferences: {{value}}",
          priority: 9,
        },
      },
    ],
  },
});

List Available Models

const models = await client.models.list();
console.log(models.data); // Array of available models

Profile Management

Profiles store user information and are referenced by the user parameter in chat completions.

Get or Create Profile

// Automatically creates profile if it doesn't exist
const profile = await client.getOrCreateProfile("user-123");
console.log(profile.id); // GetProfile internal ID
console.log(profile.externalId); // Your user ID ('user-123')

Get Profile Details

// Returns null if profile doesn't exist (won't throw)
const profile = await client.getProfile("user-123");
if (profile) {
  console.log(profile.profile.summary);
  console.log(profile.traits); // User's traits
  console.log(profile.recentMemories); // Recent memories
}

List Profiles

const result = await client.listProfiles({
  limit: 10,
  offset: 0,
  search: "john",
});
console.log(`Found ${result.total} profiles`);

Delete Profile

const result = await client.deleteProfile("profile-id");
console.log(`Deleted ${result.deleted.traits} traits`);
console.log(`Deleted ${result.deleted.memories} memories`);

Export Profile Data

const exportData = await client.exportProfile("profile-id");
// Returns complete profile with traits, memories, and message history

Data Ingestion

Automatically extract traits and memories from unstructured text (e.g., from support tickets, CRM notes, onboarding forms):

const result = await client.ingestData(
  "profile-id",
  "User loves coffee, prefers dark mode, and codes in TypeScript",
  {
    source: "chat", // Optional: Source identifier
    metadata: { sessionId: "123" }, // Optional: Additional metadata
    extractTraits: true, // Optional: Extract traits (default: true)
    extractMemories: true, // Optional: Extract memories (default: true)
  }
);

console.log(result.extracted.stats);
// { traitsCreated: 3, traitsUpdated: 1, memoriesCreated: 2 }

Selective Extraction Examples

// Extract only traits (skip memories) - useful for structured onboarding data
await client.ingestData(
  "profile-id",
  "Name: Alex, Role: Engineer, Expertise: TypeScript, React",
  {
    source: "onboarding",
    extractTraits: true,
    extractMemories: false, // Skip memory extraction
  }
);

// Extract only memories (skip traits) - useful for conversation history
await client.ingestData(
  "profile-id",
  "User mentioned they are planning a trip to Japan next month",
  {
    source: "chat",
    extractTraits: false, // Skip trait extraction
    extractMemories: true,
  }
);

// Skip all extraction - just store raw data for later processing
await client.ingestData("profile-id", "Raw conversation transcript...", {
  source: "support",
  extractTraits: false,
  extractMemories: false,
});

Traits (Advanced)

Traits are structured attributes about users (e.g., preferences, demographics).

List Traits

const traits = await client.traits.list("profile-id");
// Returns: Trait[] with key, value, confidence, etc.

Update Trait

const trait = await client.traits.update("profile-id", "favorite_language", {
  value: "TypeScript",
  confidence: 0.95,
});

Delete Trait

await client.traits.delete("profile-id", "trait-key");

Memories (Advanced)

Memories are temporal facts and context about users.

List Memories

const memories = await client.memories.list("profile-id", {
  type: "preference", // Optional: 'fact' | 'preference' | 'event' | 'context'
  limit: 10, // Optional: Max results
});

Create Memory

const memory = await client.memories.create("profile-id", {
  content: "User mentioned they love hiking on weekends",
  type: "preference",
  importance: 0.8, // Optional: 0-1 scale
});

Delete Memory

await client.memories.delete("profile-id", "memory-id");

Error Handling

The SDK throws GetProfileError for API errors with detailed information:

import { GetProfileError } from "@getprofile/sdk-js";

try {
  await client.getProfile("non-existent");
} catch (error) {
  if (error instanceof GetProfileError) {
    console.error("Status:", error.status); // HTTP status code
    console.error("Code:", error.code); // Error code
    console.error("Type:", error.errorType); // Error type
    console.error("Message:", error.message); // Error message
    console.error("Details:", error.details); // Additional details
  }
}

The SDK automatically retries on:

  • 429 (Rate Limit) errors
  • 5xx (Server) errors
  • Network timeouts

TypeScript Support

The SDK is written in TypeScript and provides comprehensive type definitions:

import type {
  ProfileDetail,
  ProfileSummary,
  Trait,
  Memory,
  ChatCompletion,
  IngestResult,
} from "@getprofile/sdk-js";

Environment Support

  • Node.js: 16.x or higher
  • Browsers: Modern browsers with fetch support
  • Edge Runtime: Vercel, Cloudflare Workers, etc.
  • Deno: Import from npm specifier

Examples

Next.js App Router (Streaming Chat)

// app/api/chat/route.ts
import { GetProfileClient } from "@getprofile/sdk-js";

const client = new GetProfileClient({
  apiKey: process.env.GETPROFILE_API_KEY!,
});

export async function POST(req: Request) {
  const { userId, messages } = await req.json();

  // GetProfile automatically injects user context
  const stream = await client.chat.completions.create({
    model: "gpt-5-mini",
    messages,
    user: userId, // Automatically adds user's traits and memories to context
    stream: true,
  });

  // Stream the response back to the client
  return new Response(
    new ReadableStream({
      async start(controller) {
        for await (const chunk of stream) {
          const content = chunk.choices[0]?.delta?.content || "";
          controller.enqueue(new TextEncoder().encode(content));
        }
        controller.close();
      },
    }),
    {
      headers: {
        "Content-Type": "text/event-stream",
        "Cache-Control": "no-cache",
      },
    }
  );
}

Express.js (Chat API)

import express from "express";
import { GetProfileClient } from "@getprofile/sdk-js";

const app = express();
app.use(express.json());

const client = new GetProfileClient({
  apiKey: process.env.GETPROFILE_API_KEY!,
});

// Chat endpoint with automatic personalization
app.post("/api/chat", async (req, res) => {
  const { userId, messages } = req.body;

  const completion = await client.chat.completions.create({
    model: "gpt-5-mini",
    messages,
    user: userId,
  });

  res.json(completion);
});

// Ingest user data to build profile
app.post("/api/profile/:userId/ingest", async (req, res) => {
  const { userId } = req.params;
  const { data } = req.body;

  const profile = await client.getOrCreateProfile(userId);
  const result = await client.ingestData(profile.id, data);

  res.json(result);
});

Vercel AI SDK Integration

import { GetProfileClient } from "@getprofile/sdk-js";
import { StreamingTextResponse } from "ai";

const client = new GetProfileClient({
  apiKey: process.env.GETPROFILE_API_KEY!,
});

export async function POST(req: Request) {
  const { userId, messages } = await req.json();

  const stream = await client.chat.completions.create({
    model: "gpt-5-mini",
    messages,
    user: userId,
    stream: true,
  });

  // Convert to Vercel AI SDK compatible stream
  return new StreamingTextResponse(
    new ReadableStream({
      async start(controller) {
        for await (const chunk of stream) {
          controller.enqueue(chunk.choices[0]?.delta?.content || "");
        }
        controller.close();
      },
    })
  );
}

Building User Profiles Over Time

// As users interact with your app, build their profile
async function handleUserMessage(userId: string, message: string) {
  // 1. Get or create the profile
  const profile = await client.getOrCreateProfile(userId);

  // 2. Get personalized response
  const completion = await client.chat.completions.create({
    model: "gpt-5-mini",
    messages: [{ role: "user", content: message }],
    user: userId,
  });

  // 3. Optionally ingest the conversation to improve future personalization
  await client.ingestData(
    profile.id,
    `User: ${message}\nAssistant: ${completion.choices[0].message.content}`,
    { source: "chat" }
  );

  return completion.choices[0].message.content;
}

Controlling Extraction and Injection

Control what gets learned and what context gets used on a per-request basis:

// Example: Onboarding flow - extract traits but don't inject context yet
async function onboardUser(userId: string, onboardingData: string) {
  await client.chat.completions.create({
    model: "gpt-5-mini",
    messages: [
      {
        role: "system",
        content: "Extract user preferences from the onboarding form.",
      },
      { role: "user", content: onboardingData },
    ],
    user: userId,
    getprofile: {
      skipInjection: true, // Don't inject context during onboarding
      // Extraction still happens by default
    },
  });
}

// Example: Generic FAQ - skip both extraction and injection
async function handleFAQ(userId: string, question: string) {
  return await client.chat.completions.create({
    model: "gpt-5-mini",
    messages: [{ role: "user", content: question }],
    user: userId,
    getprofile: {
      skipInjection: true, // Generic response, no personalization
      skipExtraction: true, // Don't learn from FAQ questions
    },
  });
}

// Example: Sensitive conversation - inject context but don't extract
async function handleSensitiveQuery(userId: string, query: string) {
  return await client.chat.completions.create({
    model: "gpt-5-mini",
    messages: [{ role: "user", content: query }],
    user: userId,
    getprofile: {
      skipExtraction: true, // Don't store sensitive data
      // Still uses existing context for personalization
    },
  });
}

// Example: Domain-specific extraction with custom trait schema
async function handleTravelPlanning(userId: string, messages: any[]) {
  return await client.chat.completions.create({
    model: "gpt-5-mini",
    messages,
    user: userId,
    getprofile: {
      traits: [
        {
          key: "travel_budget",
          valueType: "enum",
          extraction: {
            enabled: true,
            promptSnippet: "budget, low, medium, high",
          },
          injection: {
            enabled: true,
            template: "Budget preference: {{value}}",
            priority: 8,
          },
        },
        {
          key: "preferred_destinations",
          valueType: "array",
          extraction: {
            enabled: true,
            promptSnippet: "countries or cities mentioned",
          },
          injection: {
            enabled: true,
            template: "Likes to travel to: {{value}}",
            priority: 7,
          },
        },
      ],
    },
  });
}

// Example: Batch import from CRM - extract traits only
async function importFromCRM(userId: string, crmNotes: string[]) {
  const profile = await client.getOrCreateProfile(userId);

  for (const note of crmNotes) {
    await client.ingestData(profile.id, note, {
      source: "crm",
      extractTraits: true, // Extract structured data
      extractMemories: false, // Skip memories for bulk import
      metadata: {
        importedAt: new Date().toISOString(),
      },
    });
  }
}

Contributing

We welcome contributions! Please see our contributing guidelines.

License

MIT

Support

Related Packages