@gicm/brain-config
v1.0.0
Published
Claude Opus 4.5 optimization toolkit - Token efficiency, extended thinking, prompt caching, and AI workflow management
Maintainers
Readme
@gicm/brain-config
Claude Opus 4.5 optimization toolkit - Save up to 85% on tokens while maintaining quality
Installation
npm install @gicm/brain-config
# or
pnpm add @gicm/brain-config
# or
yarn add @gicm/brain-configWhy This Package?
Claude Opus 4.5 introduced powerful new features for token efficiency:
- Effort Parameter: Control token usage vs quality tradeoff (up to 76% savings)
- Extended Thinking: Deep reasoning with budget control
- Prompt Caching: Cache system prompts for 90% savings
- Tool Search: Dynamic tool loading to reduce context
This package provides a type-safe way to configure these features with pre-built presets for common use cases.
Quick Start
import { BrainManager, PRESET_BALANCED } from "@gicm/brain-config";
// Create a brain manager with the balanced preset
const brain = new BrainManager(PRESET_BALANCED.config);
// Get configuration for API calls
const config = brain.getConfig();
console.log(config.effort); // "medium"
console.log(config.model); // "claude-sonnet-4-20250514"Presets
10 pre-configured presets optimized for different use cases:
Efficiency Presets
| Preset | Model | Effort | Token Savings | Best For |
|--------|-------|--------|---------------|----------|
| PRESET_TURBO | Haiku 3.5 | low | ~85% | Quick queries, simple tasks |
| PRESET_BALANCED | Sonnet 4 | medium | ~50% | Daily coding, research |
| PRESET_POWERHOUSE | Opus 4.5 | high | - | Complex reasoning, architecture |
Use Case Presets
| Preset | Description | Key Features |
|--------|-------------|--------------|
| PRESET_TRADING | DeFi trading decisions | Low temperature, memory enabled |
| PRESET_HUNTER | Opportunity discovery | Batch processing, tool search |
| PRESET_BUILDER | Code generation | Extended thinking, high quality |
| PRESET_GROWTH | Content/marketing | Creative temperature, batching |
| PRESET_AUTONOMY | Autonomous operations | Safety-focused, audit logging |
Special Presets
| Preset | Description |
|--------|-------------|
| PRESET_DEEP_RESEARCH | 1M token context for codebase analysis |
| PRESET_ULTRA_SAVER | Maximum cost savings (~95%) |
Usage Examples
Apply a Preset
import { BrainManager, PRESET_TRADING } from "@gicm/brain-config";
const brain = new BrainManager();
brain.applyPreset("trading");
// Or initialize with preset
const tradingBrain = new BrainManager(PRESET_TRADING.config);Custom Configuration
import { BrainManager } from "@gicm/brain-config";
const brain = new BrainManager({
provider: "anthropic",
model: "claude-opus-4-5-20251101",
effort: "medium",
temperature: 0.5,
maxTokens: 16384,
extendedThinking: {
enabled: true,
budgetTokens: 16000,
preserveHistory: true,
},
promptCaching: {
enabled: true,
minCacheableTokens: 1024,
},
budget: {
enabled: true,
dailyLimitUSD: 20,
monthlyLimitUSD: 200,
alertThreshold: 0.8,
pauseOnLimit: false,
},
});Track Usage & Costs
const brain = new BrainManager();
// Record usage after API calls
brain.recordUsage({
requestId: "req_123",
timestamp: new Date(),
model: "claude-opus-4-5-20251101",
effort: "medium",
inputTokens: 5000,
outputTokens: 1500,
latencyMs: 2300,
});
// Get aggregated metrics
const dailyStats = brain.getAggregatedMetrics("day");
console.log(`Total cost: $${dailyStats.totalCostUSD.toFixed(2)}`);
console.log(`Tokens saved: ${dailyStats.totalTokensSaved}`);
// Check budget status
const budget = brain.getCurrentBudgetStatus();
console.log(`Daily: ${budget.daily.percent.toFixed(1)}% used`);Cost Estimation
import { BrainManager, MODEL_PRICING } from "@gicm/brain-config";
const brain = new BrainManager();
// Estimate cost before making a call
const estimatedCost = brain.estimateCost(
10000, // input tokens
2000, // output tokens
"claude-opus-4-5-20251101",
{ thinking: 5000 } // optional thinking tokens
);
console.log(`Estimated cost: $${estimatedCost.toFixed(4)}`);
// Estimate savings from effort optimization
const savings = brain.estimateSavings(
10000, 2000, "high", "medium"
);
console.log(`Switching to medium effort saves ${savings.percentSaved}%`);Event Handling
const brain = new BrainManager();
brain.on("config:updated", (config) => {
console.log("Config changed:", config.model);
});
brain.on("budget:warning", (used, limit, type) => {
console.log(`${type} budget at ${(used/limit*100).toFixed(1)}%`);
});
brain.on("budget:exceeded", (used, limit, type) => {
console.log(`${type} budget exceeded!`);
});
brain.on("usage:recorded", (metrics) => {
console.log(`Request cost: $${metrics.costUSD.toFixed(4)}`);
});Integration with Anthropic SDK
import Anthropic from "@anthropic-ai/sdk";
import { BrainManager, PRESET_POWERHOUSE } from "@gicm/brain-config";
const brain = new BrainManager(PRESET_POWERHOUSE.config);
const config = brain.getConfig();
const client = new Anthropic();
const response = await client.messages.create({
model: config.model,
max_tokens: config.maxTokens,
temperature: config.extendedThinking?.enabled ? 1 : config.temperature,
thinking: config.extendedThinking?.enabled
? { type: "enabled", budget_tokens: config.extendedThinking.budgetTokens }
: undefined,
system: config.promptCaching?.enabled
? [{ type: "text", text: "Your system prompt...", cache_control: { type: "ephemeral" } }]
: "Your system prompt...",
messages: [{ role: "user", content: "Hello!" }],
});
// Record usage
brain.recordUsage({
requestId: response.id,
timestamp: new Date(),
model: response.model,
effort: config.effort,
inputTokens: response.usage.input_tokens,
outputTokens: response.usage.output_tokens,
latencyMs: 0, // Add your timing
});API Reference
BrainConfig
interface BrainConfig {
// Model selection
provider: "anthropic" | "openai" | "gemini";
model: string;
// Token efficiency
effort: "low" | "medium" | "high";
temperature: number; // 0-2
maxTokens: number;
// Advanced features
extendedThinking?: {
enabled: boolean;
budgetTokens: number; // 1000-128000
preserveHistory: boolean;
};
promptCaching?: {
enabled: boolean;
minCacheableTokens: number;
};
memory?: {
enabled: boolean;
provider: "local" | "redis" | "supabase";
maxEntries: number;
ttlSeconds: number;
autoSummarize: boolean;
};
budget?: {
enabled: boolean;
dailyLimitUSD: number;
monthlyLimitUSD: number;
alertThreshold: number; // 0.5-1
pauseOnLimit: boolean;
};
}BrainManager Methods
| Method | Description |
|--------|-------------|
| getConfig() | Get current configuration |
| updateConfig(updates) | Update configuration |
| applyPreset(presetId) | Apply a preset by ID |
| recordUsage(metrics) | Record API usage |
| getUsageMetrics() | Get usage history |
| getAggregatedMetrics(period) | Get aggregated stats |
| getCurrentBudgetStatus() | Get budget usage |
| estimateCost(...) | Estimate API cost |
| estimateSavings(...) | Estimate savings |
Model Pricing (Built-in)
import { MODEL_PRICING } from "@gicm/brain-config";
// Prices per 1M tokens
MODEL_PRICING["claude-opus-4-5-20251101"] // $5 input, $25 output
MODEL_PRICING["claude-sonnet-4-20250514"] // $3 input, $15 output
MODEL_PRICING["claude-haiku-3-5-20241022"] // $0.25 input, $1.25 output
MODEL_PRICING["gpt-4o"] // $2.5 input, $10 output
MODEL_PRICING["gemini-2.0-flash"] // $0.075 input, $0.3 outputEffort Level Guide
| Level | Token Multiplier | Use Case |
|-------|------------------|----------|
| low | 0.25x | Simple queries, formatting, validation |
| medium | 0.5x | Daily coding, research, documentation |
| high | 1.0x | Complex reasoning, architecture, audits |
Recommendation: Start with medium (default) and only use high when you need maximum quality.
License
MIT - Built by gICM
