npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@gmickel/gno

v0.9.1

Published

Local semantic search for your documents. Index Markdown, PDF, and Office files with hybrid BM25 + vector search.

Downloads

900

Readme

GNO

Your Local Second Brain — Index, search, and synthesize your entire digital life.

npm MIT License Website Twitter

GNO is a local knowledge engine for privacy-conscious developers and AI agents. Index your notes, code, PDFs, and Office docs. Get hybrid search (BM25 + vector + reranking) and AI-powered answers—all running 100% on your machine.


Contents


Quick Start

gno init ~/notes --name notes    # Point at your docs
gno index                        # Build search index
gno query "auth best practices"  # Hybrid search
gno ask "summarize the API" --answer  # AI answer with citations

GNO CLI


Installation

Install GNO

Requires Bun >= 1.0.0.

bun install -g @gmickel/gno

macOS: Vector search requires Homebrew SQLite:

brew install sqlite3

Verify everything works:

gno doctor

Connect to AI Agents

MCP Server (Claude Desktop, Cursor, Zed, etc.)

One command to add GNO to your AI assistant:

gno mcp install                      # Claude Desktop (default)
gno mcp install --target cursor      # Cursor
gno mcp install --target claude-code # Claude Code CLI
gno mcp install --target zed         # Zed
gno mcp install --target windsurf    # Windsurf
gno mcp install --target codex       # OpenAI Codex CLI
gno mcp install --target opencode    # OpenCode
gno mcp install --target amp         # Amp
gno mcp install --target lmstudio    # LM Studio
gno mcp install --target librechat   # LibreChat

Check status: gno mcp status

Skills (Claude Code, Codex, OpenCode)

Skills integrate via CLI—no MCP overhead:

gno skill install --scope user       # User-wide
gno skill install --target codex     # Codex
gno skill install --target all       # Both Claude + Codex

Full setup guide: MCP Integration · CLI Reference


Search Modes

| Command | Mode | Best For | | :----------------- | :------------------ | :---------------------------------------- | | gno search | Document-level BM25 | Exact phrases, code identifiers | | gno vsearch | Contextual Vector | Natural language, concepts | | gno query | Hybrid | Best accuracy (BM25 + vector + reranking) | | gno ask --answer | RAG | Direct answers with citations |

BM25 indexes full documents (not chunks) with Snowball stemming—"running" matches "run". Vector embeds chunks with document titles for context awareness.

gno search "handleAuth"              # Find exact matches
gno vsearch "error handling patterns" # Semantic similarity
gno query "database optimization"    # Full pipeline
gno ask "what did we decide" --answer # AI synthesis

Output formats: --json, --files, --csv, --md, --xml


Web UI

Visual dashboard for search, browsing, editing, and AI answers—right in your browser.

gno serve                    # Start on port 3000
gno serve --port 8080        # Custom port

GNO Web UI

Open http://localhost:3000 to:

  • Search — BM25, vector, or hybrid modes with visual results
  • Browse — Paginated document list, filter by collection
  • Edit — Create, edit, and delete documents with live preview
  • Ask — AI-powered Q&A with citations
  • Manage Collections — Add, remove, and re-index collections
  • Switch presets — Change models live without restart

Document Editing

GNO Document Editor

Full-featured markdown editor with:

| Feature | Description | | :---------------------- | :----------------------------------- | | Split View | Side-by-side editor and live preview | | Auto-save | 2-second debounced saves | | Syntax Highlighting | CodeMirror 6 with markdown support | | Keyboard Shortcuts | ⌘S save, ⌘B bold, ⌘I italic, ⌘K link | | Quick Capture | ⌘N creates new note from anywhere |

Collections Management

GNO Collections

  • Add collections with folder path input
  • View document count, chunk count, embedding status
  • Re-index individual collections
  • Remove collections (documents preserved)

AI Answers

GNO AI Answers

Ask questions in natural language—GNO searches your documents and synthesizes answers with inline citations linking to sources.

Everything runs locally. No cloud, no accounts, no data leaving your machine.

Detailed docs: Web UI Guide


REST API

Programmatic access to all GNO features via HTTP.

# Hybrid search
curl -X POST http://localhost:3000/api/query \
  -H "Content-Type: application/json" \
  -d '{"query": "authentication patterns", "limit": 10}'

# AI answer
curl -X POST http://localhost:3000/api/ask \
  -H "Content-Type: application/json" \
  -d '{"query": "What is our deployment process?"}'

# Index status
curl http://localhost:3000/api/status

| Endpoint | Method | Description | | :------------------------- | :----- | :-------------------------- | | /api/query | POST | Hybrid search (recommended) | | /api/search | POST | BM25 keyword search | | /api/ask | POST | AI-powered Q&A | | /api/docs | GET | List documents | | /api/docs | POST | Create document | | /api/docs/:id | PUT | Update document content | | /api/docs/:id/deactivate | POST | Remove from index | | /api/doc | GET | Get document content | | /api/collections | POST | Add collection | | /api/collections/:name | DELETE | Remove collection | | /api/sync | POST | Trigger re-index | | /api/status | GET | Index statistics | | /api/presets | GET | List model presets | | /api/presets | POST | Switch preset | | /api/models/pull | POST | Download models | | /api/models/status | GET | Download progress |

No authentication. No rate limits. Build custom tools, automate workflows, integrate with any language.

Full reference: API Documentation


Agent Integration

MCP Server

GNO MCP

GNO exposes 6 tools via Model Context Protocol:

| Tool | Description | | :-------------- | :-------------------------- | | gno_search | BM25 keyword search | | gno_vsearch | Vector semantic search | | gno_query | Hybrid search (recommended) | | gno_get | Retrieve document by ID | | gno_multi_get | Batch document retrieval | | gno_status | Index health check |

Design: MCP tools are retrieval-only. Your AI assistant (Claude, GPT-4) synthesizes answers from retrieved context—best retrieval (GNO) + best reasoning (your LLM).

Skills

Skills add GNO search to Claude Code/Codex without MCP protocol overhead:

gno skill install --scope user

GNO Skill in Claude Code

Then ask your agent: "Search my notes for the auth discussion"

Detailed docs: MCP Integration · Use Cases


How It Works

graph TD
    A[User Query] --> B(Query Expansion)
    B --> C{Lexical Variants}
    B --> D{Semantic Variants}
    B --> E{HyDE Passage}

    C --> G(BM25 Search)
    D --> H(Vector Search)
    E --> H
    A --> G
    A --> H

    G --> I(Ranked Results)
    H --> J(Ranked Results)
    I --> K{RRF Fusion}
    J --> K

    K --> L(Top 20 Candidates)
    L --> M(Cross-Encoder Rerank)
    M --> N[Final Results]
  1. Strong Signal Check — Skip expansion if BM25 has confident match (saves 1-3s)
  2. Query Expansion — LLM generates lexical variants, semantic rephrases, and a HyDE passage
  3. Parallel Retrieval — Document-level BM25 + chunk-level vector search on all variants
  4. Fusion — RRF with 2× weight for original query, tiered bonus for top ranks
  5. Reranking — Qwen3-Reranker scores full documents (32K context), blended with fusion

Deep dive: How Search Works


Features

| Feature | Description | | :------------------ | :---------------------------------------------------- | | Hybrid Search | BM25 + vector + RRF fusion + cross-encoder reranking | | Document Editor | Create, edit, delete docs with live markdown preview | | Web UI | Visual dashboard for search, browse, edit, and AI Q&A | | REST API | HTTP API for custom tools and integrations | | Multi-Format | Markdown, PDF, DOCX, XLSX, PPTX, plain text | | Local LLM | AI answers via llama.cpp—no API keys | | Privacy First | 100% offline, zero telemetry, your data stays yours | | MCP Server | Works with Claude Desktop, Cursor, Zed, + 8 more | | Collections | Organize sources with patterns, excludes, contexts | | Multilingual | 30+ languages, auto-detection, cross-lingual search | | Incremental | SHA-256 tracking—only changed files re-indexed | | Keyboard First | ⌘N capture, ⌘K search, ⌘/ shortcuts, ⌘S save |


Local Models

Models auto-download on first use to ~/.cache/gno/models/.

| Model | Purpose | Size | | :------------------ | :------------------------------------ | :----------- | | bge-m3 | Embeddings (1024-dim, multilingual) | ~500MB | | Qwen3-Reranker-0.6B | Cross-encoder reranking (32K context) | ~700MB | | Qwen/SmolLM | Query expansion + AI answers | ~600MB-1.2GB |

Model Presets

| Preset | Disk | Best For | | :--------- | :----- | :--------------------- | | slim | ~1GB | Fast, lower quality | | balanced | ~2GB | Good balance (default) | | quality | ~2.5GB | Best answers |

gno models use balanced
gno models pull --all  # Optional: pre-download models (auto-downloads on first use)

Configuration: Model Setup


Architecture

┌─────────────────────────────────────────────────┐
│            GNO CLI / MCP / Web UI / API         │
├─────────────────────────────────────────────────┤
│  Ports: Converter, Store, Embedding, Rerank    │
├─────────────────────────────────────────────────┤
│  Adapters: SQLite, FTS5, sqlite-vec, llama-cpp │
├─────────────────────────────────────────────────┤
│  Core: Identity, Mirrors, Chunking, Retrieval  │
└─────────────────────────────────────────────────┘

Details: Architecture


Development

git clone https://github.com/gmickel/gno.git && cd gno
bun install
bun test
bun run lint && bun run typecheck

Contributing: CONTRIBUTING.md


License

MIT