npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@gotza02/smartagent

v1.7.3

Published

SmartAgent - Intelligent Multi-Agent System with Sequential Thinking & Auto-Routing

Downloads

2,928

Readme

SmartAgent v1.7.0 🚀

Enterprise Multi-Agent Swarm System with Real LLM Integration (Gemini, Claude, Kimi, OpenCode)

SmartAgent คือระบบจัดการ Multi-Agent Swarm ระดับ Enterprise ที่รองรับการทำงานร่วมกันของ Agent หลายตัว พร้อมระบบคิดแบบลำดับขั้นตอน (Sequential Thinking), การส่งต่องานอัตโนมัติ (Auto-Routing), และการประมวลผลแบบขนาน (Parallel Execution)


🌟 Key Features

  • 🤖 Multi-LLM Provider Support - Gemini, Claude, Kimi K2.5, OpenCode
  • 🧠 Sequential Thinking Engine - Thought chains with branching & revision
  • 🛣️ Intelligent Auto-Routing - AI-powered intent classification & agent selection
  • 🔄 Parallel Execution - Execute multiple tasks concurrently with real LLM calls
  • 💾 Enterprise Persistence - SQLite-based context storage & handoff
  • 📱 Cross-Platform - Works on servers, PCs, and Android (Termux)

📦 Installation

Quick Start (npx)

npx @gotza02/smartagent

Global Install

npm install -g @gotza02/smartagent
smartagent

Android (Termux)

curl -fsSL https://raw.githubusercontent.com/gotza02/smartagent/main/scripts/install-termux.sh | bash

🚀 Quick Start Guide

Step 1: Set API Key

# Option A: Gemini (default)
export GEMINI_API_KEY='your_gemini_api_key'

# Option B: Claude
export ANTHROPIC_API_KEY='your_claude_api_key'
export SWARM_LLM_PROVIDER='claude'

# Option C: Kimi
export KIMI_API_KEY='your_kimi_api_key'
export SWARM_LLM_PROVIDER='kimi'

Step 2: Start the Server

# Using npx (recommended)
npx @gotza02/smartagent

# Or if installed globally
smartagent

You should see:

🚀 SmartAgent MCP Server v1.7.0
📡 Transport: stdio
🤖 LLM Provider: gemini
✅ Server ready

Step 3: First Agent Creation

Once connected, create your first agent:

{
  "tool": "spawn_agent",
  "args": {
    "type": "engineer",
    "name": "my_first_agent",
    "provider": "gemini"
  }
}

Response:

{
  "id": "agent-uuid-here",
  "name": "my_first_agent",
  "type": "engineer",
  "status": "idle",
  "provider": "gemini"
}

📖 Usage Guide

Guide 1: Complete Development Workflow

Scenario: Build a web application with authentication

Step 1: Bootstrap Team

{
  "tool": "system_bootstrap",
  "args": {
    "teamSize": "full",
    "provider": "claude",
    "objective": "Build a React web app with JWT authentication",
    "confirm": true
  }
}

This creates:

  • 1x Product Manager
  • 1x Architect
  • 2x Engineers
  • 1x QA
  • 1x Reviewer

Step 2: PM Creates Requirements

{
  "tool": "assign_task",
  "args": {
    "agentId": "pm-agent-uuid",
    "type": "requirements",
    "description": "Create PRD for JWT auth system with login/signup flows",
    "priority": 10
  }
}

Step 3: Architect Designs System

{
  "tool": "thinking_create_chain",
  "args": {
    "agentId": "architect-agent-uuid",
    "taskId": "arch-task-uuid",
    "title": "Auth System Architecture"
  }
}
{
  "tool": "thinking_add_thought",
  "args": {
    "chainId": "chain-uuid",
    "content": "Use JWT with refresh token pattern",
    "reasoning": "Better security and user experience",
    "confidence": 0.95
  }
}

Step 4: Engineers Implement in Parallel

{
  "tool": "parallel_execute",
  "args": {
    "tasks": [
      {
        "agentType": "engineer",
        "type": "implementation",
        "description": "Create /api/auth/login endpoint",
        "priority": 9
      },
      {
        "agentType": "engineer",
        "type": "implementation",
        "description": "Create /api/auth/register endpoint",
        "priority": 9
      }
    ],
    "maxConcurrency": 2
  }
}

Step 5: Context Handoff to QA

{
  "tool": "context_handoff",
  "args": {
    "fromAgentId": "engineer-1-uuid",
    "toAgentId": "qa-agent-uuid",
    "taskId": "implementation-task-uuid",
    "notes": "Focus on testing JWT token expiration and refresh flow"
  }
}

Step 6: Code Review

{
  "tool": "assign_task",
  "args": {
    "agentId": "reviewer-agent-uuid",
    "type": "review",
    "description": "Review auth implementation for security best practices",
    "context": {
      "files": ["auth.ts", "middleware.ts"]
    }
  }
}

Guide 2: Using Different LLM Providers

Example: Mix Providers for Different Tasks

Claude for Architecture (complex reasoning):

{
  "tool": "spawn_agent",
  "args": {
    "type": "architect",
    "name": "claude_architect",
    "provider": "claude"
  }
}

Kimi for Coding (fast implementation):

{
  "tool": "spawn_agent",
  "args": {
    "type": "engineer",
    "name": "kimi_coder",
    "provider": "kimi"
  }
}

Gemini for QA (thorough testing):

{
  "tool": "spawn_agent",
  "args": {
    "type": "qa",
    "name": "gemini_tester",
    "provider": "gemini"
  }
}

Now assign tasks to each - they'll use their respective LLM providers!


Guide 3: Sequential Thinking for Complex Problems

Scenario: Design a microservices architecture

// 1. Create thinking chain
{
  "tool": "thinking_create_chain",
  "args": {
    "agentId": "architect-uuid",
    "taskId": "microservices-design",
    "title": "Microservices Architecture Decision"
  }
}
// 2. Add initial thought
{
  "tool": "thinking_add_thought",
  "args": {
    "chainId": "chain-uuid",
    "content": "Split into 3 services: Auth, API Gateway, User Service",
    "reasoning": "Single responsibility principle",
    "confidence": 0.9
  }
}
// 3. Branch alternative approach
{
  "tool": "thinking_add_thought",
  "args": {
    "chainId": "chain-uuid",
    "content": "Use monolith with modular structure instead",
    "reasoning": "Simpler for small team, easier deployment",
    "confidence": 0.75,
    "branchFrom": "first-thought-uuid"
  }
}
// 4. Revise with new information
{
  "tool": "thinking_add_thought",
  "args": {
    "chainId": "chain-uuid",
    "content": "Start with monolith, extract services later",
    "reasoning": "Evolutionary architecture - start simple, grow as needed",
    "confidence": 0.95,
    "revisionOf": "second-thought-uuid"
  }
}
// 5. Export final decision
{
  "tool": "thinking_export",
  "args": {
    "chainId": "chain-uuid",
    "format": "markdown"
  }
}

Guide 4: Auto-Routing for Smart Task Assignment

Let AI choose the best agent for your task:

// Classify intent
{
  "tool": "routing_classify_intent",
  "args": {
    "input": "Review this code for SQL injection vulnerabilities"
  }
}

Response:

{
  "intent": "review",
  "confidence": 0.94,
  "category": "review",
  "complexity": "medium"
}
// Get routing recommendation
{
  "tool": "routing_route",
  "args": {
    "input": "Review this code for SQL injection vulnerabilities"
  }
}

Response:

{
  "targetAgent": "reviewer",
  "confidence": 0.96,
  "reasoning": "Input classified as review task",
  "suggestedMode": "plan"
}

Then spawn the recommended agent:

{
  "tool": "spawn_agent",
  "args": {
    "type": "reviewer",
    "provider": "claude"
  }
}

Guide 5: Parallel Execution for Speed

Scenario: Analyze multiple files simultaneously

{
  "tool": "parallel_execute",
  "args": {
    "tasks": [
      {
        "agentType": "engineer",
        "type": "analysis",
        "description": "Analyze auth.ts for security issues",
        "priority": 8
      },
      {
        "agentType": "engineer",
        "type": "analysis",
        "description": "Analyze database.ts for performance",
        "priority": 7
      },
      {
        "agentType": "engineer",
        "type": "analysis",
        "description": "Analyze api.ts for error handling",
        "priority": 7
      }
    ],
    "maxConcurrency": 3,
    "aggregationStrategy": "all"
  }
}

Guide 6: Monitoring & Debugging

Check System Health

{
  "tool": "system_health",
  "args": {}
}

View System Stats

{
  "tool": "system_stats",
  "args": {}
}

List All Agents

{
  "tool": "list_agents",
  "args": {}
}

List Busy Agents

{
  "tool": "list_agents",
  "args": {
    "status": "busy"
  }
}

View Agent Messages

{
  "tool": "get_agent_messages",
  "args": {
    "agentId": "agent-uuid",
    "limit": 20
  }
}

Export Metrics

{
  "tool": "system_metrics",
  "args": {
    "format": "prometheus"
  }
}

Guide 7: Working with Plugins

List Available Plugins

{
  "tool": "plugin_list",
  "args": {}
}

Register Custom Plugin

{
  "tool": "plugin_register",
  "args": {
    "pluginPath": "/path/to/my-plugin.js"
  }
}

🐛 Troubleshooting

Issue: "LLM API Key not configured"

Solution: Set the API key for your provider:

export GEMINI_API_KEY='your_key'
# or
export ANTHROPIC_API_KEY='your_key'
# or
export KIMI_API_KEY='your_key'

Issue: Agent stuck in "busy" status

Solution: Check and fail the task:

{
  "tool": "fail_task",
  "args": {
    "taskId": "task-uuid",
    "error": "Manual timeout - agent not responding"
  }
}

Or terminate the agent:

{
  "tool": "terminate_agent",
  "args": {
    "agentId": "agent-uuid"
  }
}

Issue: Parallel execution timeout

Solution: Increase timeout in task config:

{
  "tool": "assign_task",
  "args": {
    "agentId": "uuid",
    "type": "implementation",
    "description": "...",
    "timeout": 300
  }
}

Issue: Too many agents

Solution: Check limits and clean up:

{
  "tool": "system_config",
  "args": {
    "action": "get"
  }
}

Increase limit:

export SWARM_MAX_AGENTS=200

💡 Best Practices

1. Use Bootstrap for New Projects

Always start with system_bootstrap to get a properly structured team.

2. Mix LLM Providers

  • Claude: Complex reasoning, architecture
  • Kimi: Fast coding, implementation
  • Gemini: Balanced tasks, testing
  • OpenCode: Custom/local models

3. Use Sequential Thinking for Big Decisions

Document your reasoning process for future reference.

4. Parallelize Independent Tasks

Use parallel_execute when tasks don't depend on each other.

5. Always Handoff Context

Use context_handoff when transferring work between agents.

6. Monitor System Health

Regularly check system_health and system_stats.

7. Clean Up Regularly

Terminate idle agents to free up resources:

{
  "tool": "list_agents",
  "args": {"status": "idle"}
}

Then terminate unused agents.


🔧 Configuration

API Keys Setup

Choose your LLM provider and set the corresponding API key:

Google Gemini (Default)

export GEMINI_API_KEY='your_gemini_api_key'

Anthropic Claude

export ANTHROPIC_API_KEY='your_anthropic_api_key'
# Optional: export CLAUDE_API_KEY as fallback

Kimi (K2.5 Latest)

export KIMI_API_KEY='your_kimi_api_key'
# Optional: Custom endpoint
# export KIMI_BASE_URL='https://api.moonshot.cn/v1'

OpenCode

export OPENCODE_API_KEY='your_opencode_api_key'
# Optional: export OPENAI_API_KEY as fallback
# Optional: Custom endpoint
# export OPENCODE_BASE_URL='https://api.opencode.ai/v1'

Environment Variables

| Variable | Description | Default | |----------|-------------|---------| | GEMINI_API_KEY | Gemini API Key | - | | GOOGLE_API_KEY | Gemini fallback | - | | ANTHROPIC_API_KEY | Claude API Key | - | | CLAUDE_API_KEY | Claude fallback | - | | KIMI_API_KEY | Kimi API Key | - | | KIMI_BASE_URL | Kimi endpoint | https://api.kimi.com/coding | | OPENCODE_API_KEY | OpenCode API Key | - | | OPENAI_API_KEY | OpenCode fallback | - | | OPENCODE_BASE_URL | OpenCode endpoint | https://api.opencode.ai/v1 | | SWARM_LLM_PROVIDER | Default provider | gemini | | SWARM_LLM_MODEL | Model name | Provider-specific | | SWARM_MAX_AGENTS | Max agents | 100 (PC) / 50 (Termux) | | SWARM_LOG_LEVEL | Log level | info |


🛠️ Available Tools

1. Agent Management

Tools for creating and managing AI agents in the swarm.

spawn_agent

Create a new agent with specified configuration.

Parameters:

{
  "type": "engineer",        // Required: product_manager | architect | engineer | qa | reviewer
  "name": "my_agent",        // Optional: custom name
  "mode": "edit",            // Optional: plan | edit | ralph
  "provider": "claude",      // Optional: gemini | claude | kimi | opencode
  "capabilities": ["coding"], // Optional: array of capabilities
  "metadata": {}             // Optional: custom metadata
}

Example:

{
  "type": "engineer",
  "name": "code_reviewer",
  "mode": "edit",
  "provider": "claude"
}

spawn_agents_batch

Create multiple agents at once.

Parameters:

{
  "type": "engineer",
  "count": 3,
  "baseName": "worker",
  "mode": "edit",
  "provider": "kimi"
}

get_agent

Get details of a specific agent.

Parameters:

{
  "agentId": "uuid-of-agent"
}

list_agents

List all agents, optionally filtered by type or status.

Parameters (optional):

{
  "type": "engineer",     // Filter by type
  "status": "idle"        // Filter by status: idle | busy | completed | error | terminated
}

terminate_agent

Terminate an agent and cleanup its tasks.

Parameters:

{
  "agentId": "uuid-of-agent"
}

send_agent_message

Send a message between agents.

Parameters:

{
  "fromAgentId": "sender-uuid",
  "toAgentId": "receiver-uuid",
  "messageType": "info",
  "content": "Hello from agent 1"
}

get_agent_messages

Get messages for an agent.

Parameters:

{
  "agentId": "uuid-of-agent",
  "limit": 50
}

2. Task Management

Tools for assigning and managing tasks.

assign_task

Assign a task to an agent.

Parameters:

{
  "agentId": "uuid-of-agent",
  "type": "implementation",
  "description": "Implement user authentication",
  "context": {"file": "auth.ts"},
  "priority": 8,
  "timeout": 120,
  "dependencies": ["task-uuid-1"]  // Optional: dependent task IDs
}

get_task

Get task details.

Parameters:

{
  "taskId": "uuid-of-task"
}

complete_task

Mark a task as completed.

Parameters:

{
  "taskId": "uuid-of-task",
  "result": "Task completed successfully"
}

fail_task

Mark a task as failed.

Parameters:

{
  "taskId": "uuid-of-task",
  "error": "Failed due to timeout"
}

cancel_task

Cancel a pending task.

Parameters:

{
  "taskId": "uuid-of-task"
}

list_tasks

List tasks, optionally filtered.

Parameters (optional):

{
  "agentId": "uuid-of-agent",  // Filter by agent
  "status": "pending"          // Filter by status
}

3. Sequential Thinking

Advanced reasoning system with thought chains, branching, and revision.

thinking_create_chain

Create a new thought chain for an agent.

Parameters:

{
  "agentId": "uuid-of-agent",
  "taskId": "uuid-of-task",
  "title": "Architecture Decision"
}

thinking_add_thought

Add a thought to a chain.

Parameters:

{
  "chainId": "uuid-of-chain",
  "content": "We should use microservices",
  "reasoning": "Scalability and maintainability",
  "confidence": 0.85,
  "branchFrom": "thought-uuid",    // Optional: create branch
  "revisionOf": "thought-uuid"     // Optional: revise existing thought
}

thinking_get_chain

Get a thought chain with all thoughts.

Parameters:

{
  "chainId": "uuid-of-chain"
}

thinking_export

Export thought chain to JSON or Markdown.

Parameters:

{
  "chainId": "uuid-of-chain",
  "format": "markdown"  // Optional: json | markdown (default: json)
}

4. Auto-Routing

AI-powered intent classification and agent routing.

routing_classify_intent

Classify the intent of user input.

Parameters:

{
  "input": "Create a login system with JWT authentication"
}

Returns:

{
  "intent": "implementation",
  "confidence": 0.92,
  "category": "modify",
  "complexity": "complex",
  "requiredCapabilities": ["coding", "security"]
}

routing_route

Find the best agent for a task.

Parameters:

{
  "input": "Review this code for security issues",
  "preferredAgent": "reviewer"  // Optional: suggest agent type
}

Returns:

{
  "targetAgent": "reviewer",
  "confidence": 0.95,
  "reasoning": "Input classified as review task",
  "alternativeAgents": [...],
  "suggestedMode": "plan",
  "estimatedComplexity": 7.5
}

5. Parallel Execution

Execute multiple tasks concurrently with real LLM calls.

parallel_execute

Execute tasks in parallel across multiple agents.

Parameters:

{
  "tasks": [
    {
      "agentType": "engineer",
      "type": "implementation",
      "description": "Create API endpoint",
      "priority": 8
    },
    {
      "agentType": "qa",
      "type": "testing",
      "description": "Write unit tests",
      "priority": 7
    }
  ],
  "maxConcurrency": 3,
  "aggregationStrategy": "all"  // Options: all | first | majority | custom
}

parallel_get_execution

Get execution status and results.

Parameters:

{
  "executionId": "uuid-of-execution"
}

6. Context Management

Manage context and handoffs between agents.

context_create

Create a context for an agent.

Parameters:

{
  "agentId": "uuid-of-agent",
  "maxTokens": 4000
}

context_handoff

Handoff context from one agent to another.

Parameters:

{
  "fromAgentId": "agent-1-uuid",
  "toAgentId": "agent-2-uuid",
  "taskId": "task-uuid",
  "notes": "Review the authentication logic"
}

context_get_handoff_history

Get handoff history for an agent.

Parameters:

{
  "agentId": "uuid-of-agent"
}

7. System Tools

System monitoring and management.

system_stats

Get comprehensive system statistics.

Returns:

{
  "agents": {
    "total": 10,
    "byType": {"engineer": 5, "qa": 3, ...},
    "byStatus": {"idle": 7, "busy": 3}
  },
  "tasks": {...},
  "database": {...},
  "parallel": {...},
  "plugins": {...}
}

system_health

Check system health status.

Returns:

{
  "status": "healthy",
  "healthCheck": {...},
  "config": {...},
  "timestamp": "2026-02-01T..."
}

system_config

Get or update system configuration.

Parameters:

{
  "action": "get"  // Options: get | update | reset
}

For update:

{
  "action": "update",
  "config": {
    "maxAgents": 50,
    "logLevel": "debug"
  }
}

system_metrics

Export metrics in JSON or Prometheus format.

Parameters:

{
  "format": "prometheus"  // Options: json | prometheus
}

8. Plugin Management

Extend functionality with plugins.

plugin_list

List all registered plugins.

Returns:

{
  "plugins": [...],
  "hooks": [...]
}

plugin_register

Register a new plugin.

Parameters:

{
  "pluginPath": "/path/to/plugin.js"
}

plugin_unregister

Unregister a plugin.

Parameters:

{
  "pluginId": "plugin-uuid"
}

9. Bootstrap

Automatic team setup.

system_bootstrap

Automatically analyze project and create agent team.

Parameters:

{
  "teamSize": "standard",  // Options: minimal | standard | full
  "provider": "claude",    // Optional: LLM provider
  "objective": "Build a web app",  // Optional: project description
  "confirm": true          // Required to confirm
}

First call (without confirm):

{
  "teamSize": "standard"
}

Returns available providers to choose from.

Second call (with confirm):

{
  "teamSize": "standard",
  "provider": "claude",
  "confirm": true
}

💡 Usage Examples

Example 1: Create a Development Team

// Step 1: Bootstrap the system
{
  "tool": "system_bootstrap",
  "args": {
    "teamSize": "standard",
    "provider": "claude",
    "confirm": true
  }
}

// Returns: Team of PM, Architect, and Engineer created

Example 2: Assign a Coding Task

// Create an agent
{
  "tool": "spawn_agent",
  "args": {
    "type": "engineer",
    "name": "backend_dev",
    "provider": "kimi"
  }
}

// Assign task
{
  "tool": "assign_task",
  "args": {
    "agentId": "uuid-from-spawn",
    "type": "implementation",
    "description": "Create REST API for user management",
    "priority": 9
  }
}

Example 3: Parallel Code Review

{
  "tool": "parallel_execute",
  "args": {
    "tasks": [
      {
        "agentType": "reviewer",
        "type": "review",
        "description": "Review auth.ts for security issues"
      },
      {
        "agentType": "reviewer",
        "type": "review",
        "description": "Review database.ts for SQL injection"
      },
      {
        "agentType": "qa",
        "type": "testing",
        "description": "Create test cases for auth module"
      }
    ],
    "maxConcurrency": 3,
    "aggregationStrategy": "all"
  }
}

Example 4: Sequential Thinking for Architecture

// Create thought chain
{
  "tool": "thinking_create_chain",
  "args": {
    "agentId": "architect-uuid",
    "taskId": "arch-task-uuid",
    "title": "Database Architecture Decision"
  }
}

// Add thoughts
{
  "tool": "thinking_add_thought",
  "args": {
    "chainId": "chain-uuid",
    "content": "Use PostgreSQL for relational data",
    "reasoning": "ACID compliance and complex queries",
    "confidence": 0.9
  }
}

// Export to markdown
{
  "tool": "thinking_export",
  "args": {
    "chainId": "chain-uuid",
    "format": "markdown"
  }
}

Example 5: Context Handoff

// Architect hands off to Engineer
{
  "tool": "context_handoff",
  "args": {
    "fromAgentId": "architect-uuid",
    "toAgentId": "engineer-uuid",
    "taskId": "implementation-task",
    "notes": "Follow the database schema in the design doc"
  }
}

🔥 Multi-LLM Provider Support (v1.7.0)

Supported Providers

| Provider | API Endpoint | Latest Models | |----------|-------------|---------------| | Gemini | generativelanguage.googleapis.com | gemini-3-flash-preview | | Claude | api.anthropic.com | claude-3-5-sonnet-20241022 | | Kimi | api.kimi.com/coding | kimi-k2.5, kimi-k2.5-coder | | OpenCode | api.opencode.ai | opencode-default |

Per-Agent Provider Selection

Each agent can use a different LLM provider:

// Agent 1 uses Claude
{
  "tool": "spawn_agent",
  "args": {
    "type": "architect",
    "provider": "claude"
  }
}

// Agent 2 uses Kimi
{
  "tool": "spawn_agent",
  "args": {
    "type": "engineer",
    "provider": "kimi"
  }
}

// Agent 3 uses Gemini
{
  "tool": "spawn_agent",
  "args": {
    "type": "qa",
    "provider": "gemini"
  }
}

📊 System Architecture

┌─────────────────────────────────────────────────────────────┐
│                    SmartAgent (MCP Server)                  │
├─────────────────────────────────────────────────────────────┤
│  Agent Manager │ Task Scheduler │ Context Manager           │
├─────────────────────────────────────────────────────────────┤
│  Sequential Thinking │ Auto-Routing │ Parallel Execution    │
├─────────────────────────────────────────────────────────────┤
│  Gemini │ Claude │ Kimi │ OpenCode                         │
└─────────────────────────────────────────────────────────────┘

📝 Changelog

v1.7.0 (2026-02-01) - Multi-LLM Support

  • Full Claude API Support - Real Anthropic API integration
  • Full Kimi API Support - Kimi K2.5 with multiple endpoints
  • Full OpenCode API Support - OpenAI-compatible API
  • 🆕 New environment variables for all providers
  • 🆕 Per-agent provider selection
  • 📚 Complete API documentation

v1.6.0

  • Initial release with Gemini support
  • Sequential Thinking Engine
  • Auto-Routing
  • Parallel Execution

📄 License

MIT License - Enterprise AI Team


🤝 Support

For issues and feature requests, please visit the project repository.

Powered by: Model Context Protocol (MCP) | Multi-Agent Swarm Intelligence