@hodfords/nestjs-grpc-helper
v11.4.0-rc.14
Published
A utility for simplifying gRPC integration and communication in NestJS applications
Readme
Installation 🤖
Install the nestjs-grpc-helper package with:
npm install @hodfords/nestjs-grpc-helper --saveNext, automatically generate the proto file and include it in main.ts before starting the application:
import { generateProtoService } from '@hodfords/nestjs-grpc-helper';
generateProtoService(camelCase(env.APP_NAME), env.ROOT_PATH + '/../');Usage 🚀
Creating microservices
Create microservices using the @GrpcMicroservice decorator, similar to how you would use a Controller. Ensure that the response adheres to the nestjs-response rules:
@GrpcMicroservice()
export class UserMicroservice {
constructor(private userService: UserService) {}
@GrpcAction('Get user by id')
@ResponseModel(UserResponse)
findUserById(@GrpcValue() dto: GetUserByIdDto): Promise<UserEntity> {
return this.userService.findUserById(dto.userId);
}
}Any Type
You can use any type if fixed types are not an option. However, since it’s passed as JSON, the performance may not be as optimal as with binary. Consider using binary if performance is a concern.
@Property({ type: String, format: 'any', required: false })
@AnyType()
data: any;Create SDK
To generate a TypeScript SDK for your gRPC services, you can use the make-sdk command. This command will automatically generate the necessary proto files and package them into a JavaScript SDK.
You also need the following configuration in your sdk-config.json file:
{
"name": "sdkName",
"packageName": "@hodfords/package-name",
"format": true,
"build": true,
"output": "sdk",
"outputBuild": "sdkBuild",
"removeOutput": true,
"addAllowDecorator": true,
"tsconfig": {
"extends": "./tsconfig.json",
"compilerOptions": {
"outDir": "sdkBuild"
},
"include": ["sdk"]
}
}Details of the configuration:
| Field | Description | |-------------------|-------------------------------------------------------| | name | Name of the SDK | | packageName | Name of the package | | format | Format the generated code | | build | Build the generated code | | output | Output directory for the generated code | | outputBuild | Output directory for the built code | | removeOutput | Remove the output directory | | addAllowDecorator | Add the allow decorator, need class-validator package | | tsconfig | TypeScript configuration |
To generate the SDK, run the following command:
npm run wz-command make-sdkWhat this command does
This command will:
- Collect all request and response types: It gathers all
@GrpcValuerequest and response types from your project. - Generate proto file: Automatically generates the necessary proto files based on the collected types.
- Create JavaScript Package: Packages the generated code into a JavaScript SDK. The SDK will be published using the name and version specified in your package.json, making it available for other services to import and use. The arguments, response structure, and method names remain consistent with the definitions in your gRPC service, ensuring seamless integration and functionality across services.
SDK usage
After publishing the SDK, other services can easily integrate it. Here’s an example of how to use the generated SDK
Import the sdk package
Register the microservice module: Configure the microservice in
AppModulewith the appropriate gRPC URL and timeout settings.UserModule.register({ url: env.GRPC_URL, timeout: 5000 });Use the SDK in another service: Import the SDK and use it to interact with your gRPC services.
export class OtherService { constructor(private userMicroservice: UserMicroservice) {} async doTask(userId: string): Promise<void> { const user = await this.userMicroservice.findUserById({ id: userId }); // Process user information as needed } }
In this example, OtherService uses the UserMicroservice class from the SDK to call the findUserById method.
Mock response
To effectively generate and handle mock data in your application, you can use the @MockMethod, @MockSample, and @MockNested decorators.
Generate dynamic data with @MockMethod
Use @MockMethod to apply Faker methods for generating random values.
For example, to create a random string of 10 characters
@Property({ type: String, required: false })
@MockMethod('faker.datatype.string', [10])
@IsString()
name: string;Set fixed values with @MockSample
If you need to set a fixed value for a property, use the @MockSample decorator. This is useful for enumerations or other predefined values.
For example, to set a fixed user type
@Property({
type: String,
enum: UserTypeEnum,
enumName: 'UserTypeEnum'
})
@MockSample(UserTypeEnum.STANDARD)
@IsEnum(UserTypeEnum)
type: UserTypeEnum;Generate nested data
Use @MockNested to generate mock data for nested objects or arrays of nested objects.
For example, to create an array of 5 nested objects
@Property({ type: UserResponse, isArray: true })
@IsArray()
@ValidateNested()
@Type(() => UserResponse)
@MockNested(5)
users: UserResponse[];Document for GRPC
You can go to http://xyz/microservice-documents to check and try to call the gRPC method
MicroserviceDocumentModule.register({
isEnable: true,
prefix: <app-prefix>,
packageName: camelCase(<package-name>),
clientOptions: { ...microserviceGrpcConfig, customClass: CustomGrpcClient, transport: undefined }
})License 📝
This project is licensed under the MIT License
