npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@iflow-mcp/mcp-duckdb-memory-server

v1.1.4

Published

MCP Memory Server with DuckDB backend

Downloads

7

Readme

MCP DuckDB Knowledge Graph Memory Server

Test smithery badge NPM Version NPM License

A forked version of the official Knowledge Graph Memory Server.

Installation

Installing via Smithery

To install DuckDB Knowledge Graph Memory Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @IzumiSy/mcp-duckdb-memory-server --client claude

Manual install

Otherwise, add @IzumiSy/mcp-duckdb-memory-server in your claude_desktop_config.json manually (MEMORY_FILE_PATH is optional)

{
  "mcpServers": {
    "graph-memory": {
      "command": "npx",
      "args": [
        "-y",
        "@izumisy/mcp-duckdb-memory-server"
      ],
      "env": {
        "MEMORY_FILE_PATH": "/path/to/your/memory.data"
      }
    }
  }
}

The data stored on that path is a DuckDB database file.

Docker

Build

docker build -t mcp-duckdb-graph-memory .

Run

docker run -dit mcp-duckdb-graph-memory

Usage

Use the example instruction below

Follow these steps for each interaction:

1. User Identification:
   - You should assume that you are interacting with default_user
   - If you have not identified default_user, proactively try to do so.

2. Memory Retrieval:
   - Always begin your chat by saying only "Remembering..." and search relevant information from your knowledge graph
   - Create a search query from user words, and search things from "memory". If nothing matches, try to break down words in the query at first ("A B" to "A" and "B" for example).
   - Always refer to your knowledge graph as your "memory"

3. Memory
   - While conversing with the user, be attentive to any new information that falls into these categories:
     a) Basic Identity (age, gender, location, job title, education level, etc.)
     b) Behaviors (interests, habits, etc.)
     c) Preferences (communication style, preferred language, etc.)
     d) Goals (goals, targets, aspirations, etc.)
     e) Relationships (personal and professional relationships up to 3 degrees of separation)

4. Memory Update:
   - If any new information was gathered during the interaction, update your memory as follows:
     a) Create entities for recurring organizations, people, and significant events
     b) Connect them to the current entities using relations
     b) Store facts about them as observations

Motivation

This project enhances the original MCP Knowledge Graph Memory Server by replacing its backend with DuckDB.

Why DuckDB?

The original MCP Knowledge Graph Memory Server used a JSON file as its data store and performed in-memory searches. While this approach works well for small datasets, it presents several challenges:

  1. Performance: In-memory search performance degrades as the dataset grows
  2. Scalability: Memory usage increases significantly when handling large numbers of entities and relations
  3. Query Flexibility: Complex queries and conditional searches are difficult to implement
  4. Data Integrity: Ensuring atomicity for transactions and CRUD operations is challenging

DuckDB was chosen to address these challenges:

  • Fast Query Processing: DuckDB is optimized for analytical queries and performs well even with large datasets
  • SQL Interface: Standard SQL can be used to execute complex queries easily
  • Transaction Support: Supports transaction processing to maintain data integrity
  • Indexing Capabilities: Allows creation of indexes to improve search performance
  • Embedded Database: Works within the application without requiring an external database server

Implementation Details

This implementation uses DuckDB as the backend storage system, focusing on two key aspects:

Database Structure

The knowledge graph is stored in a relational database structure as shown below:

erDiagram
    ENTITIES {
        string name PK
        string entityType
    }
    OBSERVATIONS {
        string entityName FK
        string content
    }
    RELATIONS {
        string from_entity FK
        string to_entity FK
        string relationType
    }

    ENTITIES ||--o{ OBSERVATIONS : "has"
    ENTITIES ||--o{ RELATIONS : "from"
    ENTITIES ||--o{ RELATIONS : "to"

This schema design allows for efficient storage and retrieval of knowledge graph components while maintaining the relationships between entities, observations, and relations.

Fuzzy Search Implementation

The implementation combines SQL queries with Fuse.js for flexible entity searching:

  • DuckDB SQL queries retrieve the base data from the database
  • Fuse.js provides fuzzy matching capabilities on top of the retrieved data
  • This hybrid approach allows for both structured queries and flexible text matching
  • Search results include both exact and partial matches, ranked by relevance

Development

Setup

pnpm install

Testing

pnpm test

License

This project is licensed under the MIT License - see the LICENSE file for details.