@jackchuka/gql-ingest
v2.1.0
Published
A CLI tool for ingesting data from CSV files into a GraphQL API
Downloads
1,982
Readme
GQL Ingest
A TypeScript CLI tool that reads data from multiple formats (CSV, JSON, YAML, JSONL) and ingests it into GraphQL APIs through configurable mutations.
Features
- ✅ Supported data formats: CSV, JSON, YAML, JSONL
- ✅ Complex nested data support for sophisticated GraphQL mutations
- ✅ External GraphQL mutation definitions (separate .graphql files)
- ✅ Flexible data-to-GraphQL variable mapping via JSON configuration
- ✅ Configurable GraphQL endpoint and headers
- ✅ Parallel processing with dependency management
- ✅ Entity-level and row-level concurrency control
- ✅ Retry capabilities with exponential backoff and configurable error handling
- ✅ Comprehensive metrics and progress tracking
Installation
For End Users
# Install globally
npm install -g @jackchuka/gql-ingest
# Or use with npx (no installation required)
npx @jackchuka/gql-ingest --endpoint <url> --config <path>For Development
git clone https://github.com/jackchuka/gql-ingest.git
cd gql-ingest
npm install
npm run buildUsage
CLI Options
gql-ingest [options]
Options:
-V, --version output the version number
-e, --endpoint <url> GraphQL endpoint URL (required)
-c, --config <path> Path to configuration directory (required)
-n, --entities <list> Comma-separated list of specific entities to process
-h, --headers <headers> JSON string of headers to include in requests
-f, --format <format> Override data format detection (csv, json, yaml, jsonl)
-v, --verbose Show detailed request results and responses
--help display help for commandExamples
# Basic usage
npx @jackchuka/gql-ingest \
--endpoint https://your-graphql-api.com/graphql \
--config ./examples/demo
# With authentication headers
npx @jackchuka/gql-ingest \
--endpoint https://your-graphql-api.com/graphql \
--config ./examples/demo \
--headers '{"Authorization": "Bearer YOUR_TOKEN"}'
# With custom headers
npx @jackchuka/gql-ingest \
--endpoint https://api.example.com/graphql \
--config ./my-config \
--headers '{"X-API-Key": "your-api-key", "Content-Type": "application/json"}'
# Process specific entities only
npx @jackchuka/gql-ingest \
--endpoint https://your-graphql-api.com/graphql \
--config ./examples/demo \
--entities users,products
# Process a single entity
npx @jackchuka/gql-ingest \
--endpoint https://your-graphql-api.com/graphql \
--config ./examples/demo \
--entities itemsParallel Processing 🚀
GQL Ingest supports advanced parallel processing with dependency management for high-performance data ingestion:
Key Capabilities
- Entity-level parallelism: Process multiple entities (users, products, orders) concurrently
- Row-level parallelism: Process multiple CSV rows within an entity concurrently
- Dependency management: Ensure entities process in the correct order (e.g., users before orders)
- Smart batching: Control exactly how many entities/rows process simultaneously
- Real-time metrics: Track progress, success rates, and performance
Quick Example
# config.yaml - Add to your configuration directory
parallelProcessing:
concurrency: 10 # Process up to 10 CSV rows per entity concurrently
entityConcurrency: 3 # Process up to 3 entities simultaneously
preserveRowOrder: false # Allow rows to complete out of order for speed
# Define dependencies between entities
entityDependencies:
products: ["users"] # Products must wait for users to complete
orders: ["products"] # Orders must wait for products to completePerformance Impact: This configuration can process data 10-50x faster than sequential processing, depending on your GraphQL API's capabilities.
👉 Full Parallel Processing Guide - Detailed configuration options, performance tuning, and examples.
Retry Capabilities 🔄
GQL Ingest includes robust retry functionality to handle transient failures and improve reliability:
Key Features
- Automatic retries: Failed GraphQL mutations are retried automatically
- Exponential backoff: Intelligent delay increases between retry attempts
- Jitter: Randomization prevents thundering herd problems
- Configurable error codes: Control which HTTP status codes trigger retries
- Per-entity overrides: Different retry settings for different entities
- Metrics tracking: Monitor retry success rates and attempt counts
Quick Example
# config.yaml - Add to your configuration directory
retry:
maxAttempts: 5 # Retry up to 5 times (default: 3)
baseDelay: 2000 # Start with 2s delay (default: 1000ms)
maxDelay: 60000 # Cap delays at 60s (default: 30000ms)
exponentialBackoff: true # Double delay each retry (default: true)
retryableStatusCodes: # Which HTTP errors to retry (defaults shown)
- 408 # Request Timeout
- 429 # Too Many Requests
- 500 # Internal Server Error
- 502 # Bad Gateway
- 503 # Service Unavailable
- 504 # Gateway Timeout
# Per-entity retry overrides
entityConfig:
critical-orders:
retry:
maxAttempts: 10 # More retries for critical data
baseDelay: 500 # Faster initial retryReliability Impact: Retry capabilities can improve success rates from 95% to 99.9%+ for APIs with transient failures.
Selective Entity Processing
The --entities flag allows you to process specific entities instead of all discovered mappings:
- Process multiple entities:
--entities users,products,orders - Process a single entity:
--entities items - Entities are processed in dependency order automatically
- Missing dependencies will trigger a warning but not prevent execution
Note: When using --entities with entity dependencies defined in config.yaml, the tool will warn you about any missing dependencies but will still attempt to process the selected entities. Ensure dependent data exists in your GraphQL API before processing entities with unmet dependencies.
Configuration
The --config flag points to a configuration directory containing these necessary files:
mappings/- JSON files that map CSV columns to GraphQL variablesconfig.yaml- (Optional) Parallel processing and dependency configuration
Each entity has three corresponding files across these directories with matching names.
Example Configuration
examples/demo/mappings/items.json:
{
"dataFile": "data/items.csv",
"dataFormat": "csv",
"graphqlFile": "graphql/items.graphql",
"mapping": {
"name": "item_name",
"sku": "item_sku"
}
}examples/demo/data/items.csv:
item_name,item_sku
Item1,item-1-sku
Item2,item-2-skuexamples/demo/graphql/items.graphql:
mutation CreateItem($name: String!, $sku: String!) {
createItem(input: { name: $name, sku: $sku }) {
id
name
sku
}
}examples/demo/config.yaml (Optional - for parallel processing and retry configuration):
# Parallel processing configuration
parallelProcessing:
concurrency: 5 # Process 5 rows per entity concurrently
entityConcurrency: 2 # Process 2 entities simultaneously
preserveRowOrder: false # Allow faster out-of-order completion
# Global retry configuration
retry:
maxAttempts: 3 # Retry failed requests up to 3 times
baseDelay: 1000 # Start with 1s delay between retries
exponentialBackoff: true # Double delay each retry
# Entity dependencies
entityDependencies:
items: ["users"] # Items depend on users being processed first
# Per-entity overrides (optional)
entityConfig:
users:
retry:
maxAttempts: 5 # More retries for user creation
items:
concurrency: 10 # Higher concurrency for itemsSupported Data Formats 📄
GQL Ingest now supports multiple data formats beyond CSV for more flexible data ingestion, especially for complex nested GraphQL mutations:
Supported Formats
- CSV - Traditional flat file format
- JSON - Perfect for nested/complex data structures
- YAML - Human-friendly alternative to JSON
- JSONL - JSON Lines format for streaming large datasets
Format Selection
The tool automatically detects the format based on file extension, or you can specify it explicitly:
# Auto-detect from mapping configuration
gql-ingest --endpoint <url> --config ./config
# Force specific format
gql-ingest --endpoint <url> --config ./config --format jsonJSON/YAML Format Examples
Direct Mapping (Entire Object)
For complex GraphQL mutations with nested input types, you can map the entire data object:
data/products.json:
[
{
"name": "Premium T-Shirt",
"type": "PHYSICAL",
"options": [
{
"name": "Color",
"values": ["Red", "Blue", "Green"]
},
{
"name": "Size",
"values": ["S", "M", "L", "XL"]
}
],
"variants": [
{
"name": "Red Small",
"sku": "TS-RED-S",
"optionMappings": [
{ "name": "Color", "value": "Red" },
{ "name": "Size", "value": "S" }
]
}
]
}
]mappings/products.json:
{
"dataFile": "data/products.json",
"dataFormat": "json",
"graphqlFile": "graphql/newProduct.graphql",
"mapping": {
"input": "$" // Map entire object to input variable
}
}Path-Based Mapping
For transforming flat JSON into nested structures:
data/products-flat.json:
[
{
"product_name": "Notebook",
"product_type": "PHYSICAL",
"brand": "ACME"
}
]mappings/products-flat.json:
{
"dataFile": "data/products-flat.json",
"graphqlFile": "graphql/newProduct.graphql",
"mapping": {
"input": {
"name": "$.product_name",
"type": "$.product_type",
"brandCode": "$.brand"
}
}
}YAML Format
YAML provides a more readable alternative:
data/products.yaml:
- name: Premium T-Shirt
type: PHYSICAL
options:
- name: Color
values: [Red, Blue, Green]
- name: Size
values: [S, M, L, XL]
variants:
- name: Red Small
sku: TS-RED-S
optionMappings:
- name: Color
value: Red
- name: Size
value: SDevelopment
Scripts
npm run build # Build CLI bundle with esbuild
npm run build:types # Generate TypeScript declarations
npm run build:all # Build bundle + types
npm run dev # Run in development mode
npm run test # Run test suiteHow It Works
- Discovery: The tool scans the
mappings/directory for.jsonfiles - Dependency Resolution: Analyzes
entityDependenciesto create execution waves - Parallel Processing: For each dependency wave:
- Processes up to
entityConcurrencyentities simultaneously - Within each entity, processes up to
concurrencyCSV rows concurrently - Waits for the entire wave to complete before starting the next wave
- Processes up to
- GraphQL Execution: For each CSV row:
- Loads the GraphQL mutation definition
- Maps CSV columns to GraphQL variables using the mapping configuration
- Executes the mutation against the GraphQL endpoint
- Error Handling & Retries:
- Failed mutations are automatically retried with exponential backoff
- Non-retryable errors (e.g., validation failures) are logged and skipped
- Configurable retry policies per entity type
- Metrics & Monitoring:
- Real-time progress tracking and success/failure rates
- Retry attempt counts and success rates
- Detailed per-entity performance breakdown
License
MIT
