npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@kartech/opt-tools-mcp

v1.0.2

Published

MCP server and TypeScript client for Opt-Tools optimization API

Readme

@kartech/opt-tools-mcp

MCP server and TypeScript client for the Opt-Tools optimization API. Solve linear programming (LP), mixed-integer programming (MIP), and traveling salesman problems (TSP) with Claude Desktop/Code or programmatically.

Features

  • MCP Server - Use optimization tools directly in Claude Desktop or Claude Code
  • Type-safe - Full TypeScript support with detailed type definitions
  • Reliable - Automatic retry logic with exponential backoff
  • Simple - Clean, promise-based API
  • Flexible - Works in Node.js, browsers, and edge runtimes

Quick Start: MCP Server for Claude

Claude Desktop

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "opt-tools": {
      "command": "npx",
      "args": ["-y", "@kartech/opt-tools-mcp"],
      "env": {
        "OPT_TOOLS_SERVER_URL": "http://164.92.92.181",
        "OPT_TOOLS_API_KEY": "demo_key"
      }
    }
  }
}

Claude Code

Add to .mcp.json in your project root:

{
  "mcpServers": {
    "opt-tools": {
      "command": "npx",
      "args": ["-y", "@kartech/opt-tools-mcp"],
      "env": {
        "OPT_TOOLS_SERVER_URL": "http://164.92.92.181",
        "OPT_TOOLS_API_KEY": "demo_key"
      }
    }
  }
}

Available MCP Tools

Once configured, Claude will have access to:

| Tool | Description | |------|-------------| | solve_lp | Solve linear programming problems (resource allocation, production planning) | | solve_mip | Solve mixed-integer problems (knapsack, facility location, scheduling) | | solve_tsp | Find optimal routes visiting multiple locations | | analyze_problem | Analyze natural language problem descriptions | | get_report | Retrieve HTML reports with visualizations |

Example Prompts for Claude

  • "Solve this LP: maximize 3x + 2y subject to x + y <= 10 and 2x + y <= 15, where x, y >= 0"
  • "Find the shortest route visiting San Francisco, Oakland, Berkeley, and Palo Alto starting from SF"
  • "I have 5 items with weights [2,3,4,5,9] and values [3,4,8,8,10]. My bag holds 20kg. Which items should I take?"

Programmatic Usage

Installation

npm install @kartech/opt-tools-mcp

Quick Start

import { OptimizationClient } from '@kartech/opt-tools-mcp';

// Initialize client
const client = new OptimizationClient({
  serverUrl: 'http://164.92.92.181',
  apiKey: 'demo_key',
  timeout: 30000,  // Optional: 30 seconds
  retries: 3,      // Optional: retry failed requests
  debug: false     // Optional: enable debug logging
});

// Solve a linear programming problem
const lpSolution = await client.solveLp({
  variables: [
    { name: 'x', type: 'continuous', lower_bound: 0 },
    { name: 'y', type: 'continuous', lower_bound: 0 }
  ],
  objective: {
    type: 'maximize',
    expression: '3*x + 2*y'
  },
  constraints: [
    { expression: 'x + y <= 10', type: 'inequality' },
    { expression: '2*x + y <= 15', type: 'inequality' }
  ],
  generate_report: true
});

console.log('Status:', lpSolution.status);
console.log('Optimal value:', lpSolution.objective_value);
console.log('Solution:', lpSolution.solution);

// Get HTML report
if (lpSolution.report_id) {
  const htmlReport = await client.getReport(lpSolution.report_id);
  // Save or display the HTML report
}

API Reference

Constructor

new OptimizationClient(config: OptimizationClientConfig)

Configuration Options:

| Option | Type | Required | Default | Description | |--------|------|----------|---------|-------------| | serverUrl | string | Yes | - | Base URL of the Opt-Tools API server | | apiKey | string | Yes | - | Your API key for authentication | | timeout | number | No | 30000 | Request timeout in milliseconds | | retries | number | No | 3 | Number of retry attempts for failed requests | | debug | boolean | No | false | Enable debug logging |

Methods

solveLp(problem: LpProblem): Promise<SolveResponse>

Solve a linear programming problem (all continuous variables).

Example:

const solution = await client.solveLp({
  variables: [
    { name: 'x1', type: 'continuous', lower_bound: 0, upper_bound: 100 },
    { name: 'x2', type: 'continuous', lower_bound: 0 }
  ],
  objective: {
    type: 'minimize',
    expression: '5*x1 + 3*x2'
  },
  constraints: [
    { expression: '2*x1 + x2 >= 20', type: 'inequality' },
    { expression: 'x1 + 2*x2 >= 10', type: 'inequality' }
  ],
  timeout: 60,
  generate_report: true
});

solveMip(problem: MipProblem): Promise<SolveResponse>

Solve a mixed-integer programming problem (mix of continuous and integer/binary variables).

Example:

const solution = await client.solveMip({
  variables: [
    { name: 'x', type: 'continuous', lower_bound: 0 },
    { name: 'y', type: 'integer', lower_bound: 0, upper_bound: 10 },
    { name: 'z', type: 'binary' }  // 0 or 1
  ],
  objective: {
    type: 'maximize',
    expression: '10*x + 15*y + 20*z'
  },
  constraints: [
    { expression: 'x + 2*y + 3*z <= 100', type: 'inequality' }
  ]
});

solveTsp(problem: TspProblem): Promise<SolveResponse>

Solve a traveling salesman problem (find shortest route visiting all locations).

Example:

const solution = await client.solveTsp({
  locations: [
    { name: 'Warehouse', lat: 37.7749, lon: -122.4194 },
    { name: 'Customer A', lat: 37.8044, lon: -122.2712 },
    { name: 'Customer B', lat: 37.6879, lon: -122.4702 },
    { name: 'Customer C', lat: 37.7580, lon: -122.4430 }
  ],
  start_location: 'Warehouse',
  end_location: 'Warehouse',  // Optional: return to start
  timeout: 120
});

// Solution contains optimized route order
console.log('Route:', solution.solution.route);
console.log('Total distance:', solution.solution.total_distance);

analyzeProblem(description: string): Promise<AnalysisResponse>

Analyze a natural language problem description to identify problem type and structure.

Example:

const analysis = await client.analyzeProblem(
  "I need to maximize profit from selling products x and y. " +
  "Product x earns $3 profit and y earns $2. " +
  "I have 10 hours of labor and 15 units of material. " +
  "x needs 1 hour and 2 materials, y needs 1 hour and 1 material."
);

console.log('Problem type:', analysis.problem_type);
console.log('Variables:', analysis.variables_detected);
console.log('Constraints:', analysis.constraints_detected);
console.log('Recommendations:', analysis.recommendations);

getReport(reportId: string): Promise<string>

Retrieve an HTML report by its ID.

Example:

const htmlReport = await client.getReport('report-uuid-here');

// In Node.js - save to file
import { writeFileSync } from 'fs';
writeFileSync('report.html', htmlReport);

// In browser - display in new tab
const newWindow = window.open();
newWindow.document.write(htmlReport);

listReports(limit?: number): Promise<ReportMetadata[]>

List recent reports for the authenticated user.

Example:

const reports = await client.listReports(50);

reports.forEach(report => {
  console.log(`${report.report_id}: ${report.problem_type} (${report.status})`);
  console.log(`  Created: ${report.created_at}`);
});

Type Definitions

Variable

interface Variable {
  name: string;
  type: 'continuous' | 'integer' | 'binary';
  lower_bound?: number;
  upper_bound?: number;
  description?: string;
}

Objective

interface Objective {
  type: 'minimize' | 'maximize';
  expression: string;
  description?: string;
}

Constraint

interface Constraint {
  expression: string;
  type: 'equality' | 'inequality';
  description?: string;
}

SolveResponse

interface SolveResponse {
  status: string;                    // "OPTIMAL", "FEASIBLE", "INFEASIBLE", etc.
  objective_value?: number;          // Optimal objective value
  solution?: Record<string, any>;    // Variable values and other solution data
  report_id?: string;                // ID for retrieving HTML report
  execution_time_ms?: number;        // Solver execution time
  solver_info?: Record<string, any>; // Additional solver information
}

Error Handling

The client automatically retries failed requests (network errors, rate limits, service unavailable). For unrecoverable errors, it throws standard JavaScript errors:

try {
  const solution = await client.solveLp(problem);
} catch (error) {
  if (error.response?.status === 401) {
    console.error('Invalid API key');
  } else if (error.response?.status === 400) {
    console.error('Invalid request:', error.response.data);
  } else if (error.code === 'ECONNREFUSED') {
    console.error('Cannot connect to server');
  } else {
    console.error('Unexpected error:', error.message);
  }
}

Rate Limiting

The API enforces rate limits based on your plan:

  • Free: 5 requests/minute
  • Pro: 60 requests/minute
  • Enterprise: Unlimited

When rate limited (HTTP 429), the client automatically retries with exponential backoff.

Timeouts

Default timeout is 30 seconds. For complex optimization problems, increase the timeout:

const client = new OptimizationClient({
  serverUrl: 'http://164.92.92.181',
  apiKey: 'demo_key',
  timeout: 120000  // 2 minutes
});

// Or per-request timeout for specific problems
const solution = await client.solveMip({
  // ... problem definition
  timeout: 300  // 5 minutes for this specific problem
});

Debug Logging

Enable debug mode to see detailed request/response logs:

const client = new OptimizationClient({
  serverUrl: 'http://164.92.92.181',
  apiKey: 'demo_key',
  debug: true
});

// Logs will show:
// [OptimizationClient] Solving LP problem: {...}
// [OptimizationClient] Response received: {...}

License

MIT

Support

For issues and feature requests, please visit: https://github.com/kartbabu/opt-tools-mcp-client/issues

For API documentation and examples, visit: https://api.opt-tools.com/docs