@kenkaiiii/queen-rag
v1.3.0
Published
RAG (Retrieval-Augmented Generation) project initializer for Queen Claude ecosystem
Downloads
134
Maintainers
Readme
🚀 Queen RAG Installer
Create production-ready RAG (Retrieval-Augmented Generation) applications with the Queen Claude ecosystem.
Features
- Full-Stack RAG Application: Next.js frontend + FastAPI backend
- Vector Database: ChromaDB for efficient document retrieval
- Assistant UI: Pre-configured chat interface with streaming
- OpenAI Integration: GPT-4 with vision capabilities
- Queen Claude Ecosystem: Specialized agents and commands for RAG development
Installation
npm install -g @kenkaiiii/queen-ragUsage
queen-rag my-rag-app
cd my-rag-appProject Structure
my-rag-app/
├── frontend/ # Next.js + Assistant UI
├── backend/ # FastAPI + ChromaDB
├── .claude/ # Queen Claude configuration
│ ├── agents/ # RAG-specialized agents
│ └── commands/ # Custom slash commands
└── CLAUDE.md # RAG development guidelinesSpecialized Agents
- rag_backend: FastAPI & ChromaDB specialist
- rag_frontend: React & Assistant UI specialist
- vector_specialist: Embeddings & search optimization
- debuggy: RAG system debugging
- cheeky_backend: Python validation
- cheeky_frontend: Frontend validation
Available Commands
/start-rag: Get everything running quickly/check: Verify code quality and fix issues/commit: Create a git commit
Quick Start
Backend Setup
cd backend
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
cp .env.example .env
# Add your OpenAI API key to .env
python main.pyFrontend Setup
cd frontend
npm install
cp .env.example .env
npm run devRequirements
- Node.js 18+
- Python 3.10+
- OpenAI API key
Development Guidelines
The project includes strict RAG development guidelines in CLAUDE.md:
- KISS: Keep It Simple - use existing components
- YAGNI: Build only what's needed
- DRY: Don't repeat yourself
- SOLID: Single responsibility for agents
Quality Gates
Before committing:
- Backend: MyPy strict mode, Ruff checks
- Frontend: TypeScript strict, ESLint
- Vector ops: 1536 dimensions, cosine similarity
- Performance: <200ms search, <1s first token
License
MIT
Support
For issues and questions: https://github.com/kenkaiiii/queen-claude/issues
