npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@langchain/mcp-adapters

v1.0.3

Published

LangChain.js adapters for Model Context Protocol (MCP)

Readme

LangChain.js MCP Adapters

npm version License: MIT

This library provides a lightweight wrapper that makes Anthropic Model Context Protocol (MCP) tools compatible with LangChain.js and LangGraph.js.

Features

  • 🔌 Transport Options

    • Connect to MCP servers via stdio (local) or Streamable HTTP (remote)
      • Streamable HTTP automatically falls back to SSE for compatibility with legacy MCP server implementations
    • Support for custom headers in SSE connections for authentication
    • Configurable reconnection strategies for both transport types
  • 🔄 Multi-Server Management

    • Connect to multiple MCP servers simultaneously
    • Auto-organize tools by server or access them as a flattened collection
  • 🧩 Agent Integration

    • Compatible with LangChain.js and LangGraph.js
    • Optimized for OpenAI, Anthropic, and Google models
    • Supports rich content responses including text, images, and embedded resources
  • 🛠️ Development Features

    • Uses debug package for debug logging
    • Flexible configuration options
    • Robust error handling

Installation

npm install @langchain/mcp-adapters

Example: Connect to one or more servers via MultiServerMCPClient

The library allows you to connect to one or more MCP servers and load tools from them, without needing to manage your own MCP client instances.

import { createAgent } from "langchain";
import { ChatOpenAI } from "@langchain/openai";
import { MultiServerMCPClient } from "@langchain/mcp-adapters";

// Create client and connect to server
const client = new MultiServerMCPClient({
  // Global tool configuration options
  // Whether to throw on errors if a tool fails to load (optional, default: true)
  throwOnLoadError: true,
  // Whether to prefix tool names with the server name (optional, default: false)
  prefixToolNameWithServerName: false,
  // Optional additional prefix for tool names (optional, default: "")
  additionalToolNamePrefix: "",

  // Use standardized content block format in tool outputs
  useStandardContentBlocks: true,

  // Server configuration
  mcpServers: {
    // adds a STDIO connection to a server named "math"
    math: {
      transport: "stdio",
      command: "npx",
      args: ["-y", "@modelcontextprotocol/server-math"],
      // Restart configuration for stdio transport
      restart: {
        enabled: true,
        maxAttempts: 3,
        delayMs: 1000,
      },
    },

    // here's a filesystem server
    filesystem: {
      transport: "stdio",
      command: "npx",
      args: ["-y", "@modelcontextprotocol/server-filesystem"],
    },

    // Sreamable HTTP transport example, with auth headers and automatic SSE fallback disabled (defaults to enabled)
    weather: {
      url: "https://example.com/weather/mcp",
      headers: {
        Authorization: "Bearer token123",
      }
      automaticSSEFallback: false
    },

    // OAuth 2.0 authentication (recommended for secure servers)
    "oauth-protected-server": {
      url: "https://protected.example.com/mcp",
      authProvider: new MyOAuthProvider({
        // Your OAuth provider implementation
        redirectUrl: "https://myapp.com/oauth/callback",
        clientMetadata: {
          redirect_uris: ["https://myapp.com/oauth/callback"],
          client_name: "My MCP Client",
          scope: "mcp:read mcp:write"
        }
      }),
      // Can still include custom headers for non-auth purposes
      headers: {
        "User-Agent": "My-MCP-Client/1.0"
      }
    },

    // how to force SSE, for old servers that are known to only support SSE (streamable HTTP falls back automatically if unsure)
    github: {
      transport: "sse", // also works with "type" field instead of "transport"
      url: "https://example.com/mcp",
      reconnect: {
        enabled: true,
        maxAttempts: 5,
        delayMs: 2000,
      },
    },
  },
});

const tools = await client.getTools();

// Create an OpenAI model
const model = new ChatOpenAI({
  model: "gpt-4o-mini",
  temperature: 0,
});

// Create the React agent
const agent = createAgent({
  llm: model,
  tools,
});

// Run the agent
try {
  const mathResponse = await agent.invoke({
    messages: [{ role: "user", content: "what's (3 + 5) x 12?" }],
  });
  console.log(mathResponse);
} catch (error) {
  console.error("Error during agent execution:", error);
  // Tools throw ToolException for tool-specific errors
  if (error.name === "ToolException") {
    console.error("Tool execution failed:", error.message);
  }
}

await client.close();

Example: Manage the MCP Client yourself

This example shows how you can manage your own MCP client and use it to get LangChain tools. These tools can be used anywhere LangChain tools are used, including with LangGraph prebuilt agents, as shown below.

The example below requires some prerequisites:

npm install @langchain/mcp-adapters @langchain/langgraph @langchain/core @langchain/openai

export OPENAI_API_KEY=<your_api_key>
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";

import { createAgent } from "langchain";
import { ChatOpenAI } from "@langchain/openai";
import { loadMcpTools } from "@langchain/mcp-adapters";

// Initialize the ChatOpenAI model
const model = new ChatOpenAI({ model: "gpt-4" });

// Automatically starts and connects to a MCP reference server
const transport = new StdioClientTransport({
  command: "npx",
  args: ["-y", "@modelcontextprotocol/server-math"],
});

// Initialize the client
const client = new Client({
  name: "math-client",
  version: "1.0.0",
});

try {
  // Connect to the transport
  await client.connect(transport);

  // Get tools with custom configuration
  const tools = await loadMcpTools("math", client, {
    // Whether to throw errors if a tool fails to load (optional, default: true)
    throwOnLoadError: true,
    // Whether to prefix tool names with the server name (optional, default: false)
    prefixToolNameWithServerName: false,
    // Optional additional prefix for tool names (optional, default: "")
    additionalToolNamePrefix: "",
    // Use standardized content block format in tool outputs (default: false)
    useStandardContentBlocks: false,
  });

  // Create and run the agent
  const agent = createAgent({ llm: model, tools });
  const agentResponse = await agent.invoke({
    messages: [{ role: "user", content: "what's (3 + 5) x 12?" }],
  });
  console.log(agentResponse);
} catch (e) {
  console.error(e);
} finally {
  // Clean up connection
  await client.close();
}

For more detailed examples, see the examples directory.

Notifications and Progress

You can subscribe to server notifications and tool progress events directly on the MultiServerMCPClient via top‑level callbacks.

import { MultiServerMCPClient } from "@langchain/mcp-adapters";

const client = new MultiServerMCPClient({
  mcpServers: {
    everything: {
      transport: "stdio",
      command: "npx",
      args: ["-y", "@modelcontextprotocol/server-everything"],
    },
  },

  // Receive log/notification messages from the server
  onMessage: (log, source) => {
    console.log(`[${source.server}] ${log.data}`);
  },

  // Receive progress updates (e.g. from long‑running tool calls)
  onProgress: (progress, source) => {
    const pct =
      progress.percentage ??
      (progress.progress != null && progress.total
        ? Math.round((progress.progress / progress.total) * 100)
        : undefined);
    if (pct != null) {
      const origin =
        source.type === "tool" ? `${source.server}/${source.name}` : "unknown";
      console.log(`[progress:${origin}] ${pct}%`);
    }
  },

  // Optional: react to server-side list changes
  onToolsListChanged: (evt, source) => {
    console.log(`[${source.server}] tools changed (${evt.tools?.length ?? 0})`);
  },
});

const tools = await client.getTools();
// ... invoke tools as usual ...
await client.close();

Available notification callbacks you can register:

  • onMessage: server log/diagnostic messages
  • onProgress: progress events (includes percentage or progress/total) with source describing origin (e.g., tool name/server)
  • onInitialized, onCancelled
  • onPromptsListChanged, onResourcesListChanged, onResourcesUpdated, onRootsListChanged, onToolsListChanged

Tool Hooks (modify args/results)

Use hooks to customize tool calls:

import { MultiServerMCPClient } from "@langchain/mcp-adapters";

const client = new MultiServerMCPClient({
  mcpServers: {
    math: {
      transport: "stdio",
      command: "npx",
      args: ["-y", "@modelcontextprotocol/server-math"],
    },
  },

  // Change args/headers before the tool call
  beforeToolCall: ({ serverName, name, args }) => {
    // Add/override an argument
    const nextArgs = { ...(args as Record<string, unknown>), injected: true };
    // For HTTP/SSE transports, you may also add per-call headers
    return {
      args: nextArgs,
      headers: { "X-Request-ID": crypto.randomUUID() },
    };
  },

  // Change the tool result after execution
  afterToolCall: (res) => {
    // Option A: return a 2‑tuple [content, artifact]
    if (res.name === "someTool") return { result: ["modified-output", []] };

    // Option B: return a LangChain ToolMessage
    // return { result: new ToolMessage({ content: "overridden", tool_call_id: "id" }) };

    // Option C: return a LangGraph Command instance
    // return { result: new Command(...) }

    // Or pass-through (no change)
    return { result: res.result };
  },
});

const tools = await client.getTools();
const t = tools.find((tool) => tool.name.includes("add"));
const out = await t?.invoke({ a: 1, b: 2 });

Notes:

  • beforeToolCall can return { args?, headers? }. Headers are supported for HTTP/SSE. Stdio connections do not support custom headers.
  • afterToolCall may return either a 2‑tuple [content, artifact], a ToolMessage, a Command instance, or nothing (to keep the original result).

Tool Configuration Options

[!TIP] The useStandardContentBlocks defaults to false for backward compatibility, however we recommend setting it to true for new applications, as this will likely become the default in a future release.

When loading MCP tools either directly through loadMcpTools or via MultiServerMCPClient, you can configure the following options:

| Option | Type | Default | Description | | ------------------------------ | -------------------------------------- | ----------------------------------------------------- | ------------------------------------------------------------------------------------ | | throwOnLoadError | boolean | true | Whether to throw an error if a tool fails to load | | prefixToolNameWithServerName | boolean | false | If true, prefixes all tool names with the server name (e.g., serverName__toolName) | | additionalToolNamePrefix | string | "" | Additional prefix to add to tool names (e.g., prefix__serverName__toolName) | | useStandardContentBlocks | boolean | false | See Tool Output Mapping; set true for new applications | | outputHandling | "content", "artifact", or object | resource -> "artifact", all others -> "content" | See Tool Output Mapping | | defaultToolTimeout | number | 0 | Default timeout for all tools (overridable on a per-tool basis) |

Tool Output Mapping

[!TIP] This section is important if you are working with multimodal tools, tools that produce embedded resources, or tools that produce large outputs that you may not want to be included in LLM input context. If you are writing a new application that only works with tools that produce simple text or JSON output, we recommend setting useStandardContentBlocks to true and leaving outputHandling undefined (will use defaults).

MCP tools return arrays of content blocks. A content block can contain text, an image, audio, or an embedded resource. The right way to map these outputs into LangChain ToolMessage objects can differ based on the needs of your application, which is why we introduced the useStandardContentBlocks and outputHandling configuration options.

The useStandardContentBlocks field determines how individual MCP content blocks are transformed into a structure recognized by LangChain ChatModel providers (e.g. ChatOpenAI, ChatAnthropic, etc). The outputHandling field allows you to specify whether a given type of content should be sent to the LLM, or set aside for some other part of your application to use in some future processing step (e.g. to use a dataframe from a database query in a code execution environment).

Standardizing the Format of Tool Outputs

In @langchain/core version 0.3.48 we created a new set of content block types that offer a standardized structure for multimodal inputs. As you might guess from the name, the useStandardContentBlocks setting determines whether @langchain/mcp-adapters converts tool outputs to this format. For backward compatibility with older versions of @langchain/mcp-adapters, it also determines whether tool message artifacts are converted. See the conversion rules below for more info.

[!IMPORTANT] > ToolMessage.content and ToolMessage.artifact will always be arrays of content block objects as described by the rules below, except in one special case. When the outputHandling option routes text output to the ToolMessage.content field and the only content block produced by a tool call is a text block, ToolMessage.content will be a string containing the text content produced by the tool.

When useStandardContentBlocks is true (recommended for new applications):

  • Text: Returned as StandardTextBlock objects.
  • Images: Returned as base64 StandardImageBlock objects.
  • Audio: Returned as base64 StandardAudioBlock objects.
  • Embedded Resources: Returned as StandardFileBlock, with a source_type of text or base64 depending on whether the resource was binary or text. URI resources are fetched eagerly from the server and the results of the fetch are returned following these same rules. We treat all embedded resource URIs as resolvable by the server, and we do not attempt to fetch external URIs.

When useStandardContentBlocks is false (default for backward compatibility):

  • Tool outputs routed to ToolMessage.artifact (controlled by the outputHandling option):
    • Embedded Resources: Embedded resources containing only a URI are fetched eagerly from the server and the results of the fetch operation are stored in the artifact array without transformation. Otherwise embedded resources are stored in the artifact array in their original MCP content block structure without modification.
    • All other content types: Stored in the artifact array in their original MCP content block structure without modification.
  • Tool outputs routed to the ToolMessage.content array (controlled by the outputHandling option):
    • Text: Returned as MessageContentText objects, unless it is the only content block in the output, in which case it's assigned directly to ToolMessage.content as a string.
    • Images: Returned as MessageContentImageUrl objects with base64 data URLs (data:image/png;base64,<data>)
    • Audio: Returned as StandardAudioBlock objects.
    • Embedded Resources: Returned as StandardFileBlock, with a source_type of text or base64 depending on whether the resource was binary or text. URI resources are fetched eagerly from the server and the results of the fetch are returned following these same rules. We treat all embedded resource URIs as resolvable by the server, and we do not attempt to fetch external URIs.

Determining Which Tool Outputs will be Visible to the LLM

The outputHandling option allows you to determine which tool output types are assigned to ToolMessage.content, and which are assigned to ToolMessage.artifact. Data in ToolMessage.content is used as input context when the LLM is invoked, while ToolMessage.artifact is not.

By default @langchain/mcp-adapters maps MCP resource content blocks to ToolMessage.artifact, and maps all other MCP content block types to ToolMessage.content. The value of useStandardContentBlocks determines how the structure of each content block is transformed during this process.

[!TIP] Examples where ToolMessage.artifact can be useful include cases when you need to send multimodal tool outputs via HumanMessage or SystemMessage because the LLM provider API doesn't accept multimodal tool outputs, or cases where one tool might produce a large output to be indirectly manipulated by some other tool (e.g. a query tool that loads dataframes into a Python code execution environment).

The outputHandling option can be assigned to "content", "artifact", or an object that maps MCP content block types to either content or artifact.

When working with MultiServerMCPClient, the outputHandling field can be assigned to the top-level config object and/or to individual server entries in mcpServers. Entries in mcpServers override those in the top-level config, and entries in the top-level config override the defaults.

For example, consider the following configuration:

const clientConfig = {
  useStandardContentBlocks: true,
  outputHandling: {
    image: "artifact",
    audio: "artifact",
  },
  mcpServers: {
    camera-server: {
      url: "...",
      outputHandling: {
        image: content
      },
    },
    microphone: {
      url: "...",
      outputHandling: {
        audio: content
      },
    },
  },
}

When calling tools from the camera MCP server, the following outputHandling config will be used:

{
  text: "content", // default
  image: "content", // default and top-level config overridden by "camera" server config
  audio: "artifact", // default overridden by top-level config
  resource: "artifact", // default
}

Similarly, when calling tools on the microphone MCP server, the following outputHandling config will be used:

{
  text: "content", // default
  image: "artifact", // default overridden by top-level config
  audio: "content", // default and top-level config overridden by "microphone" server config
  resource: "artifact", // default
}

Tool Timeout Configuration

Using defaultToolTimeout

You can configure a global timeout for all tools by setting the defaultToolTimeout field in the client params. You can include a defaultToolTimeout field in the server config to set the timeout for all tools for that server, or globally for the entire client by setting it in the top-level config.

This timeout will be used as the default timeout for all tools unless overridden by a tool-specific timeout.

const client = new MultiServerMCPClient({
  mcpServers: {
    "data-processor": {
      command: "python",
      args: ["data_server.py"],
      defaultToolTimeout: 30000, // timeout will be 30 seconds
    },
    "image-processor": {
      transport: "stdio",
      command: "node",
      args: ["image_server.js"],
      // timeout will be 10 seconds (set in the top-level config)
    },
  },
  defaultToolTimeout: 10000, // 10 seconds
});

const tools = await client.getTools();
const slowTool = tools.find((t) => t.name.includes("process_large_dataset"));

// Will timeout after 30 seconds (defaultToolTimeout)
const result = await slowTool.invoke({ dataset: "huge_file.csv" });

Using withConfig

MCP tools support timeout configuration through LangChain's standard RunnableConfig interface. This allows you to set custom timeouts on a per-tool-call basis:

const client = new MultiServerMCPClient({
  mcpServers: {
    "data-processor": {
      command: "python",
      args: ["data_server.py"],
    },
  },
  useStandardContentBlocks: true,
});

const tools = await client.getTools();
const slowTool = tools.find((t) => t.name.includes("process_large_dataset"));

// You can use withConfig to set tool-specific timeouts before handing
// the tool off to a LangGraph ToolNode or some other part of your
// application
const slowToolWithTimeout = slowTool.withConfig({ timeout: 300000 }); // 5 min timeout

// This invocation will respect the 5 minute timeout
const result = await slowToolWithTimeout.invoke({ dataset: "huge_file.csv" });

// or you can invoke directly without withConfig
const directResult = await slowTool.invoke(
  { dataset: "huge_file.csv" },
  { timeout: 300000 }
);

// Quick timeout for fast operations
const quickResult = await fastTool.invoke(
  { query: "simple_lookup" },
  { timeout: 5000 } // 5 seconds
);

// Default timeout (60 seconds from MCP SDK) when no config provided
const normalResult = await tool.invoke({ input: "normal_processing" });

Timeouts can be configured using the following RunnableConfig fields:

| Parameter | Type | Default | Description | | --------- | ----------- | --------- | ------------------------------------------------------------- | | timeout | number | 60000 | Timeout in milliseconds for the tool call | | signal | AbortSignal | undefined | An AbortSignal that, when asserted, will cancel the tool call |

OAuth 2.0 Authentication

For secure MCP servers that require OAuth 2.0 authentication, you can use the authProvider option instead of manually managing headers. This provides automatic token refresh, error handling, and standards-compliant OAuth flows.

New in v0.4.6.

Basic OAuth Setup

import type { OAuthClientProvider } from "@modelcontextprotocol/sdk/client/auth.js";

class MyOAuthProvider implements OAuthClientProvider {
  constructor(
    private config: {
      redirectUrl: string;
      clientMetadata: OAuthClientMetadata;
    }
  ) {}

  get redirectUrl() {
    return this.config.redirectUrl;
  }
  get clientMetadata() {
    return this.config.clientMetadata;
  }

  // Implement token storage (localStorage, database, etc.)
  tokens(): OAuthTokens | undefined {
    const stored = localStorage.getItem("mcp_tokens");
    return stored ? JSON.parse(stored) : undefined;
  }

  async saveTokens(tokens: OAuthTokens): Promise<void> {
    localStorage.setItem("mcp_tokens", JSON.stringify(tokens));
  }

  // Implement other required methods...
  // See MCP SDK documentation for complete examples
}

const client = new MultiServerMCPClient({
  mcpServers: {
    "secure-server": {
      url: "https://secure-mcp-server.example.com/mcp",
      authProvider: new MyOAuthProvider({
        redirectUrl: "https://myapp.com/oauth/callback",
        clientMetadata: {
          redirect_uris: ["https://myapp.com/oauth/callback"],
          client_name: "My MCP Client",
          scope: "mcp:read mcp:write",
        },
      }),
    },
  },
  useStandardContentBlocks: true,
});

OAuth Features

The authProvider automatically handles:

  • Token Refresh: Automatically refreshes expired access tokens using refresh tokens
  • 401 Error Recovery: Automatically retries requests after successful authentication
  • PKCE Security: Uses Proof Key for Code Exchange for enhanced security
  • Standards Compliance: Follows OAuth 2.0 and RFC 6750 specifications
  • Transport Compatibility: Works with both StreamableHTTP and SSE transports

OAuth vs Manual Headers

| Aspect | OAuth Provider | Manual Headers | | ----------------- | ----------------------- | --------------------------------- | | Token Refresh | ✅ Automatic | ❌ Manual implementation required | | 401 Handling | ✅ Automatic retry | ❌ Manual error handling required | | Security | ✅ PKCE, secure flows | ⚠️ Depends on implementation | | Standards | ✅ RFC 6750 compliant | ⚠️ Requires manual compliance | | Complexity | ✅ Simple configuration | ❌ Complex implementation |

Recommendation: Use authProvider for production OAuth servers, and headers only for simple token-based auth or debugging.

Reconnection Strategies

Both transport types support automatic reconnection:

Stdio Transport Restart

{
  transport: "stdio",
  command: "npx",
  args: ["-y", "@modelcontextprotocol/server-math"],
  restart: {
    enabled: true,      // Enable automatic restart
    maxAttempts: 3,     // Maximum restart attempts
    delayMs: 1000       // Delay between attempts in ms
  }
}

SSE Transport Reconnect

{
  transport: "sse",
  url: "https://example.com/mcp-server",
  headers: { "Authorization": "Bearer token123" },
  reconnect: {
    enabled: true,      // Enable automatic reconnection
    maxAttempts: 5,     // Maximum reconnection attempts
    delayMs: 2000       // Delay between attempts in ms
  }
}

Error Handling

The library provides different error types to help with debugging:

  • MCPClientError: For client connection and initialization issues
  • ToolException: For errors during tool execution
  • ZodError: For configuration validation errors (invalid connection settings, etc.)

Example error handling:

try {
  const client = new MultiServerMCPClient({
    mcpServers: {
      math: {
        transport: "stdio",
        command: "npx",
        args: ["-y", "@modelcontextprotocol/server-math"],
      },
    },
    useStandardContentBlocks: true,
  });

  const tools = await client.getTools();
  const result = await tools[0].invoke({ expression: "1 + 2" });
} catch (error) {
  if (error.name === "MCPClientError") {
    // Handle connection issues
    console.error(`Connection error (${error.serverName}):`, error.message);
  } else if (error.name === "ToolException") {
    // Handle tool execution errors
    console.error("Tool execution failed:", error.message);
  } else if (error.name === "ZodError") {
    // Handle configuration validation errors
    console.error("Configuration error:", error.issues);
    // Zod errors contain detailed information about what went wrong
    error.issues.forEach((issue) => {
      console.error(`- Path: ${issue.path.join(".")}, Error: ${issue.message}`);
    });
  } else {
    // Handle other errors
    console.error("Unexpected error:", error);
  }
}

Common Zod Validation Errors

The library uses Zod for validating configuration. Here are some common validation errors:

  • Missing required parameters: For example, omitting command for stdio transport or url for SSE transport
  • Invalid parameter types: For example, providing a number where a string is expected
  • Invalid connection configuration: For example, using an invalid URL format for SSE transport

Example Zod error for an invalid SSE URL:

{
  "issues": [
    {
      "code": "invalid_string",
      "validation": "url",
      "path": ["mcpServers", "weather", "url"],
      "message": "Invalid url"
    }
  ],
  "name": "ZodError"
}

Debug Logging

This package makes use of the debug package for debug logging.

Logging is disabled by default, and can be enabled by setting the DEBUG environment variable as per the instructions in the debug package.

To output all debug logs from this package:

DEBUG='@langchain/mcp-adapters:*'

To output debug logs only from the client module:

DEBUG='@langchain/mcp-adapters:client'

To output debug logs only from the tools module:

DEBUG='@langchain/mcp-adapters:tools'

License

MIT

Acknowledgements

Big thanks to @vrknetha, @knacklabs for the initial implementation!

Contributing

Contributions are welcome! Please check out our contributing guidelines for more information.