@langchain/yandex
v1.0.1
Published
Yandex integration for LangChain.js
Downloads
4,527
Maintainers
Keywords
Readme
@langchain/yandex
This package contains the LangChain.js integrations for YandexGPT through their Foundation Models REST API.
Installation
npm install @langchain/yandex @langchain/coreSetup your environment
First, you should create a service account with the ai.languageModels.user role.
Next, you have two authentication options:
- IAM token.
You can specify the token in a constructor parameter as
iam_tokenor in an environment variableYC_IAM_TOKEN. - API key
You can specify the key in a constructor parameter as
api_keyor in an environment variableYC_API_KEY.
Chat Models and LLM Models
This package contains the ChatYandexGPT and YandexGPT classes for working with the YandexGPT series of models.
To specify the model you can use model_uri parameter, see the documentation for more details.
By default, the latest version of yandexgpt-lite is used from the folder specified in the parameter folder_id or YC_FOLDER_ID environment variable.
Examples
import { ChatYandexGPT } from "@langchain/yandex";
import { HumanMessage, SystemMessage } from "@langchain/core/messages";
const chat = new ChatYandexGPT();
const response = await chat.invoke([
new SystemMessage(
"You are a helpful assistant that translates English to French."
),
new HumanMessage("I love programming."),
]);import { YandexGPT } from "@langchain/yandex";
const model = new YandexGPT();
const res = await model.invoke([`Translate "I love programming" into French.`]);Embeddings
This package also adds support for YandexGPT embeddings models.
To specify the model you can use model_uri parameter, see the documentation for more details.
By default, the latest version of text-search-query embeddings model is used from the folder specified in the parameter folder_id or YC_FOLDER_ID environment variable.
Example
import { YandexGPTEmbeddings } from "@langchain/yandex";
const model = new YandexGPTEmbeddings({});
/* Embed queries */
const res = await model.embedQuery("This is a test document.");
/* Embed documents */
const documentRes = await model.embedDocuments(["This is a test document."]);Development
To develop the yandex package, you'll need to follow these instructions:
Install dependencies
pnpm installBuild the package
pnpm buildOr from the repo root:
pnpm build --filter @langchain/yandexRun tests
Test files should live within a tests/ file in the src/ folder. Unit tests should end in .test.ts and integration tests should
end in .int.test.ts:
$ pnpm test:intLint & Format
Run the linter & formatter to ensure your code is up to standard:
pnpm lint && pnpm formatAdding new entrypoints
If you add a new file to be exported, either import & re-export from src/index.ts, or add it to the exports field in the package.json file and run pnpm build to generate the new entrypoint.
