npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@leolee9086/vector-metrics

v1.0.1

Published

向量度量算法集合

Readme

Vector Metrics

向量度量算法集合,支持15种距离和相似度算法。

安装

npm install @base/vector-metrics

使用方法

import { 
  computeCosineSimilarity,
  computeEuclideanDistance,
  computeDotProduct,
  computeVectorNorm,
  computeManhattanDistance,
  computeHammingDistance,
  computeJaccardDistance,
  computeBrayCurtisDistance,
  computeChebyshevDistance,
  computeMinkowskiDistance,
  computeChiSquareDistance,
  computeClarkDistance,
  computeCorrelationDistance,
  computeLorentzianDistance,
  computeSquaredEuclideanDistance,
  getMetric,
  getAvailableMetrics
} from '@base/vector-metrics';

// 直接使用算法函数
const similarity = computeCosineSimilarity([1, 2, 3], [4, 5, 6]);
const distance = computeEuclideanDistance([1, 2, 3], [4, 5, 6]);
const dotProduct = computeDotProduct([1, 2, 3], [4, 5, 6]);

// 通过算法名获取算法
const cosineMetric = getMetric('cosine-similarity');
const euclideanMetric = getMetric('euclidean');
const manhattanMetric = getMetric('manhattan');

// 使用获取的算法
const similarity2 = cosineMetric([1, 2, 3], [4, 5, 6]);
const distance2 = euclideanMetric([1, 2, 3], [4, 5, 6]);

// 获取所有可用算法名称
const availableMetrics = getAvailableMetrics();
console.log(availableMetrics); // ['dot-product', 'vector-norm', 'cosine-similarity', ...]

支持的算法

基础度量

  • 点积 (Dot Product) - 向量内积计算
  • 向量范数 (Vector Norm) - L2范数计算
  • 余弦相似度 (Cosine Similarity) - 角度相似性度量

距离度量

  • 欧几里得距离 (Euclidean Distance) - 直线距离
  • 平方欧几里得距离 (Squared Euclidean) - 避免开方运算
  • 曼哈顿距离 (Manhattan Distance) - L1距离
  • 切比雪夫距离 (Chebyshev Distance) - L∞距离
  • 闵可夫斯基距离 (Minkowski Distance) - 广义距离

特殊距离

  • 汉明距离 (Hamming Distance) - 二进制向量距离
  • 杰卡德距离 (Jaccard Distance) - 集合相似度
  • 布雷-柯蒂斯距离 (Bray-Curtis Distance) - 生态学距离
  • 卡方距离 (Chi-Square Distance) - 统计距离
  • 克拉克距离 (Clark Distance) - 比例敏感距离
  • 相关距离 (Correlation Distance) - 相关性度量
  • 洛伦兹距离 (Lorentzian Distance) - 异常检测距离

开发

# 运行测试
npm test

# 运行基准测试
npm run tournament

# 构建
npm run build

许可证

AGPL-3.0