@linhmh/ai-discussion-mcp
v1.0.4
Published
MCP server for multi-model AI discussions
Readme
🤖 AI Discussion MCP Server
Optimized MCP server for multi-model AI discussions with intelligent context management and token optimization.
✨ Features
- Multi-Model Support: Claude 4.0 (Augment internal), Gemini 2.5 Pro/Flash, DeepSeek R1
- Context Optimization: Intelligent token management and compression
- Cost Efficient: Claude 4.0 free via Augment, optimized pricing for other models
- Parallel Processing: Simultaneous model calls for faster discussions
- Smart Context Sharing: All models receive the same conversation context
🚀 Quick Setup
1. Install Dependencies
pip install -r requirements.txt2. Configure API Keys
Create or update augment_config.json:
{
"openrouter_api_key": "your_openrouter_key_for_deepseek_r1",
"gemini_api_key": "your_google_api_key_for_gemini"
}3. Add to Augment
Add to your Augment MCP configuration:
{
"mcpServers": {
"ai-discussion": {
"command": "python3",
"args": ["mcp_discussion_server.py"],
"cwd": "/path/to/mcp_sdk",
"env": {
"OPENROUTER_API_KEY": "your_openrouter_api_key",
"GEMINI_API_KEY": "your_gemini_api_key"
}
}
}
}4. Usage in Augment
Thảo luận giữa Claude, Gemini và DeepSeek về cách tối ưu database performance🛠️ Available Tools
Core Discussion Tools
1. discuss - Multi-Model Discussion
Purpose: Detailed multi-perspective analysis với synthesis Usage: "Hãy thảo luận về [topic] giữa r1 và gemini"
Examples:
- "Thảo luận về microservices vs monolith cho startup"
- "So sánh Python vs Go cho backend API"
- "Discuss pros and cons of TypeScript"
2. chat - Simple Chat
Purpose: Direct conversation với specific model Usage: "Chat với [model] về [topic]"
Examples:
- "Chat với deepseek về async programming"
- "Hỏi r1 về best practices cho REST API"
- "Ask AI about JWT implementation"
3. consensus - Multi-Model Consensus
Purpose: Focused opinion synthesis với clear recommendation Usage: "Lấy consensus về [question]"
Examples:
- "Consensus về database choice cho e-commerce platform"
- "Ý kiến chung về cloud providers (AWS vs GCP vs Azure)"
- "Lấy consensus về programming language cho AI project"
📊 Tool Comparison:
discuss= Detailed exploration 🔍chat= Quick answers ⚡consensus= Clear decisions 🎯
API Reference
configure(api_keys: dict)
Configure API keys for the providers.
Parameters:
api_keys: Dictionary with provider names as keys and API keys as values- Supported providers:
'openai','gemini','openrouter'
- Supported providers:
chat(prompt: str, model: str, history: list = None)
Start or continue a conversation.
Parameters:
prompt: The user's messagemodel: Model name to use (e.g.,'gpt-4o-mini','gemini-1.5-flash')history: Previous conversation history (optional)
Returns:
tuple:(response, new_history)where response is the AI's reply and new_history contains the updated conversation history
get_consensus(prompt: str, models: list[str])
Get consensus from multiple models.
Parameters:
prompt: The question or topic to get consensus onmodels: List of model names to consult
Returns:
str: Synthesized consensus response from all models
🎯 Supported Models
Claude (Augment Internal - FREE)
claude-4- Claude 4.0 via Augment internal (no API costs)claude- General Claude reference
Google Gemini
gemini-2.5-pro- 2M context window, best qualitygemini-2.5-flash- 1M context window, fast & cost-effectivegemini-2.5-flash-preview-04-17- Preview versiongemini-2.5-flash-lite-preview-06-17- Lightweight version
OpenRouter
deepseek-r1- Cost-effective reasoning modeldeepseek/deepseek-r1- Full OpenRouter format
💰 Cost Optimization
Optimized for minimal costs:
- Claude 4.0: $0.00 (free via Augment internal)
- Gemini 2.5 Flash: $0.0008 per 6.5K tokens
- DeepSeek R1: $0.0112 per 6.5K tokens
🚀 Performance Features
- Context Compression: 31% reduction with quality preservation
- Token Caching: Faster estimation with LRU cache
- Parallel Processing: Multiple model calls simultaneously
- Smart Budget Management: Intelligent token allocation
📁 Project Structure
mcp_sdk/
├── core/
│ ├── main_logic.py # Core chat and consensus functions
│ └── provider_manager.py # Provider management and routing
├── providers/ # AI model providers (Google, OpenRouter)
├── system_prompts/ # Optimized system prompts
└── utils/
├── token_utils.py # Model-specific token estimation
├── context_compression.py # Intelligent text compression
├── model_optimizer.py # Per-model optimizations
├── token_budget.py # Budget management
└── conversation_memory.py # Context persistence📚 Documentation
OPTIMIZATION_SUMMARY.md- Detailed optimization guide and resultsREADME.md- This file
📄 License
MIT License
