npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@manticorp/csv-mapper

v1.0.1

Published

CSV column mapper for the browser with optional UI, auto-mapping, transforms, validation, and robust parsing via PapaParse.

Downloads

7

Readme

CSV Mapper

npm version License: MIT

Do you need to accept CSV files from users? Then this library is for you!

Simple example

CSV Mapper is a powerful JavaScript library that dynamically remaps CSV columns with an intuitive UI for column mapping. It handles the complexity of CSV parsing, validation, and transformation while providing a seamless user experience.

Table of Contents

Key Features

  • 🎯 Smart Column Mapping - Automatic column detection with fuzzy matching
  • 🎨 User-Friendly UI - Intuitive interface for manual column mapping
  • 🔧 Data Transformation - Built-in transformations (case conversion, formatting, etc.)
  • Validation - Comprehensive validation system with custom rules
  • 📊 Robust CSV Parsing - Handles complex CSV formats using PapaParse
  • 🌐 Universal - Works in browsers and Node.js
  • 📱 Responsive - Mobile-friendly mapping interface
  • Performant - Efficient processing of large CSV files

Installation

NPM

npm install @manticorp/csv-mapper

CDN (Browser)

<!-- UMD (recommended for browser) -->
<script src="https://unpkg.com/@manticorp/csv-mapper/dist/csv-mapper.umd.min.js"></script>

<!-- ES Module -->
<script type="module">
import CsvMapper from 'https://unpkg.com/@manticorp/csv-mapper/dist/csv-mapper.esm.min.js';
</script>

Local Files

Download the latest release and include the appropriate file:

<script src="path/to/csv-mapper.umd.min.js"></script>

Quick Start

Basic Browser Usage

<!DOCTYPE html>
<html>
<head>
    <title>CSV Mapper Example</title>
</head>
<body>
    <input id="csv-input" type="file" accept=".csv">
    <div id="mapping-controls"></div>
    
    <script src="https://unpkg.com/@manticorp/csv-mapper/dist/csv-mapper.umd.min.js"></script>
    <script>
        const mapper = new CsvMapper('#csv-input', {
            columns: ['name', 'email', 'phone'],
            controlsContainer: '#mapping-controls'
        });
        
        mapper.addEventListener('afterRemap', (e) => {
            console.log('Mapped CSV:', e.detail.csv);
            // Upload to your server or process the data
        });
    </script>
</body>
</html>

ES Module Usage

import CsvMapper from '@manticorp/csv-mapper';

const mapper = new CsvMapper('#csv-input', {
    columns: [
        'product_id',
        'name', 
        'price',
        'category'
    ]
});

Node.js Usage

const CsvMapper = require('@manticorp/csv-mapper');

const mapper = new CsvMapper({
    columns: ['id', 'name', 'email']
});

const csvText = `id,full_name,email_address
1,John Doe,[email protected]
2,Jane Smith,[email protected]`;

const result = mapper.mapCsv(csvText);
if (result) {
    console.log(result.csv);
    console.log('Validation:', result.validation);
}

Usage Examples

E-commerce Product Import

const mapper = new CsvMapper('#csv-input', {
    columns: [
        { name: 'sku', required: true, validate: /^[A-Z0-9-]+$/ },
        { name: 'name', required: true, transform: 'trim' },
        { name: 'price', required: true, validate: 'number', transform: 'number' },
        { name: 'category', transform: 'title' },
        { name: 'stock', validate: 'number', defaultValue: '0' }
    ],
    remap: true,
    setInputValidity: true
});

mapper.addEventListener('validationFailed', (e) => {
    console.log('Validation errors:', e.detail.validation.errors);
    showErrorsToUser(e.detail.validation.errors);
});

mapper.addEventListener('afterRemap', (e) => {
    uploadToServer(e.detail.csv);
});

User Data Processing

const mapper = new CsvMapper('#user-csv', {
    columns: [
        { name: 'email', required: true, validate: 'email' },
        { name: 'first_name', transform: 'title' },
        { name: 'last_name', transform: 'title' },
        { name: 'phone', validate: 'phone' },
        { name: 'signup_date', validate: 'date', transform: { type: 'date', format: 'Y-m-d' } }
    ]
});

Headless Usage (No UI)

Perfect for server-side processing or when you don't need user interaction:

const mapper = new CsvMapper({
    columns: [
        'id',
        'name',
        { name: 'email', match: header => /email|e-mail/i.test(header) },
        { name: 'phone', match: header => /phone|tel|mobile/i.test(header) }
    ],
    showUserControls: false
});

const result = mapper.mapCsv(csvString);

CSV Parsing Capabilities

The library uses PapaParse for robust CSV parsing that properly handles:

Multiline Fields

product_id,name,description
1,"Multi-line
Product Name
With Breaks","Long description here"
2,"Another Product","Simple description"

Various Quote Styles

  • Standard double quotes: "field with spaces"
  • Escaped quotes: "field with ""quotes"" inside"
  • Mixed content: "field with, comma and ""quotes"""

Different Separators and Dialects

  • Comma-separated (CSV): field1,field2,field3
  • Semicolon-separated: field1;field2;field3
  • Tab-separated (TSV): field1 field2 field3
  • Pipe-separated: field1|field2|field3

The library automatically detects the dialect or you can specify it explicitly.

Built-in Transformations

CSV Mapper includes several built-in transformations that can be applied to column data:

| Transformation | Description | Example | |---|---|---| | 'string' | Convert to string | 123"123" | | 'number' | Parse as number (handles currency, percentages, etc.) | "$1,234.56""1234.56" | | 'boolean' | Convert to boolean representation | "yes""1", "no""0" | | 'date' | Parse and format dates | "12/31/2023""2023-12-31" | | 'uppercase' | Convert to uppercase | "hello""HELLO" | | 'lowercase' | Convert to lowercase | "HELLO""hello" | | 'trim' | Remove leading/trailing whitespace | " hello ""hello" | | 'title' | Convert to title case | "hello world""Hello World" | | 'camel' | Convert to camelCase | "hello world""helloWorld" | | 'pascal' | Convert to PascalCase | "hello world""HelloWorld" | | 'snake' | Convert to snake_case | "hello world""hello_world" | | 'kebab' | Convert to kebab-case | "hello world""hello-world" | | 'screaming_snake' | Convert to SCREAMING_SNAKE_CASE | "hello world""HELLO_WORLD" | | 'ascii' | Convert to ASCII (remove accents) | "café""cafe" |

Using Transformations

const columns = [
    { name: 'price', transform: 'number' },
    { name: 'name', transform: ['trim', 'title'] },
    { name: 'slug', transform: ['lowercase', 'kebab'] },
    { name: 'custom', transform: (value) => value.replace(/[^a-zA-Z0-9]/g, '') }
];

Built-in Validations

CSV Mapper provides built-in validation types for common data formats:

| Validation | Description | Example | |---|---|---| | 'email' | Valid email address format | [email protected] | | 'number' | Valid number (with min/max options) | 123.45 | | 'boolean' | Boolean values (true/false, yes/no, 1/0) | true, yes, 1 |
| 'date' | Valid date format | 2023-12-31, 12/31/2023 | | 'phone' / 'tel' | Phone number format | +1-555-123-4567 | | 'time' | Time format (HH:MM:SS) | 14:30:00, 2:30 PM | | 'datetime' | Date and time combined | 2023-12-31T14:30:00Z |

Using Validations

const columns = [
    { name: 'email', validate: 'email' },
    { name: 'age', validate: { type: 'number', min: 0, max: 120 } },
    { name: 'phone', validate: 'phone' },
    { name: 'website', validate: /^https?:\/\/.+/ },
    { name: 'status', validate: (value) => ['active', 'inactive'].includes(value) }
];

Headless Usage (No UI)

CsvMapper can optionally be run using no UI for server-side processing or automated workflows.

Here is an example using no UI:

    const columns = [
        'id',
        'name',
        'address_line_1',
        'address_line_2',
        {
            name: 'town',
            transform: ['title']
        },
        {
            name: 'county',
            match: (header) => ['county', 'state', 'region'].includes(header.trim().toLowerCase())
        },
        {
            name: 'postcode',
            match: (header) => ['postcode', 'postalcode', 'zip'].includes(header.replace(/\s*/g, '').toLowerCase()),
            required: true
        },
    ];
    const csvMapper = new CsvMapper({
        columns,
    });

    const csv = `id,name,address_line_1,town,state,zip
1,John,123 fake street,Fakesham,Fakesberg,12345;
2,Mary,456 Real Road,margheritavill,,67890`;

    const result = csvMapper.mapCsv(csv);
    if (result) {
        console.log(result.csv);
        // and upload to server, or save, or whatver.
    }

Configuration

<input id="csv" type="file" accept=".csv">
<input id="map" type="hidden">
<div id="remapping-controls"></div>
<script type="module">
import CsvMapper from "./../dist/csv-mapper.js";

const columns = [
    'name',
    {name: 'barcode', outputHeader: 'upc'},
    {name: 'sku', title: 'SKU'},
];

const mapper = new CsvMapper('#csv', {
    columns: columns,                   // Column specification

    // Parsing/dialect
    headers: true,
    separator: '',
    enclosure: '',
    escape: '',

    output: {
        generateCsv: true, // Whether to generate output CSV string
        delimiter: ',',
        quoteChar: '"',
        escapeChar: '\\',
        newline: '\n',
        allowUnmappedTargets: false, // Whether to allow csv columns that are unmapped in the input into the output
    },

    // Library behavior
    remap: true,                   // Whether to attempt remapping
    showUserControls: true,        // Defaults to true if input is present, false if not
    mappingInput: null,            // HTMLElement | false
    controlsContainer: null,       // selector | element | null
    autoThreshold: 0.8,            // Similarity threshold for auto column mapping
    setInputValidity: false,       // Whether to use setCustomValidity on the file input
    mappingMode: 'configToCsv',    // Default mapping direction
    allowMultipleSelection: false, // Whether to allow many-to-many mapping

    uiRenderer: null,              // UI renderer - accepts string ("default") or a renderer object
    transformer: null,             // Data transformer/validator
    parser: null,                  // CSV parser
});
</script>

Column Specifications

The columns configuration is highly flexible and supports many options:

const columns = [ // Columns should be an array
    'id', // You can pass a simple string
    'name',
    {     // Or it can be defined with an object
        name: 'sku',
        validate: /^SKU[0-9]+$/
    },
    {
        // This, by default, is used for the output csv header and UI display.
        name: 'barcode',

        // This displays in the UI.
        title: 'Barcode',

        // This displays in the UI as a tooltip (title="description").
        description: 'The UPC barcode',

        // This displays in the UI as a visible comment.
        comment: 'must be of the format 01234567890',

        // This will be what's used in the remapped output.
        outputHeader: 'UPC',

        // Default value to be used if not present in mapping.
        defaultValue: '0',

        // Whether the column is required for remapping (default: false).
        required: true,

        // Whether the column is allowed to be mapped multiple times.
        allowDuplicates: false,

        // Function/regex for matching to supplied CSV headers.
        match: (header) => ['barcode', 'upc', 'isbn'].includes(header.toLowerCase()),

        // A transformation function or list of transformions. Some default built ins are provided which you can reference by string.
        transform: ['string', 'upper', (str) => str.split('-').map(a => a.trim()).join('')],

        // A string (e.g. 'email', 'date'), regex or function for validation.
        validate: /^(?=.*0)[0-9]{12}$/,

        // Validation message supplied to the user.
        validationMessage: '"Barcode" should be a valid UPC-A barcode.',
    }
];

Events

This is a full list of events emitted by CsvMapper which you can listen to.

All events emit a CustomEvent object upon which all parameters reside in the "detail" key.

csvMapper.addEventListener('beforeParseCsv', (e) => {
    console.log(e.detail.csv);
});

| Event | Description | |-|-| | beforeParseCsv | before parsing CSV text | | afterParseCsv | after parsing CSV text | | afterRead | after reading file text (before parsing) | | mappingChange | when the mapping changes (user or programmatically) | | mappingFailed | when mapping is invalid (e.g. required columns missing) | | mappingSuccess | when mapping is valid | | beforeMap | before validating the mapping | | afterMap | after validating the mapping | | beforeRemap | before remapping data | | afterRemap | after remapping data | | validationFailed | after remapping, if there were validation errors | | validationSuccess | after remapping, if there were no validation errors | | transformationFail | when a transformation error occurs during data transformation | | validationFail | when a validation error occurs during data transformation |

beforeParseCsv

event = {
    detail: {
        csv // The csv text passed in
    }
}

afterParseCsv

event = {
    detail: {
        csv: {
            headers,
            rows,
            rawRows,
            dialect: {
                    separator,
                    enclosure,
                    escape,
                }
            },
        }
    }
}

afterRead

event = {
    detail: {
        text // csv text
    }
}

Triggered after reading file text (before parsing). You can modify the CSV text before it gets parsed:

csvMapper.addEventListener('afterRead', (e) => {
    // Replace the entire CSV content
    e.detail.text = `id,sku\n1,abc`;

    // Or modify existing content
    e.detail.text = e.detail.text.replace(/old_header/g, 'new_header');
});

mappingChange

event = {
    detail: {
        mapping // Current mapping object
    }
}

Triggered when the mapping changes (either through user interaction or programmatically). The mapping can be either simple strings or arrays (for many-to-many mapping):

csvMapper.addEventListener('mappingChange', (e) => {
    console.log('New mapping:', e.detail.mapping);
    // e.g. { 'CSV Header': 'target_column' } or { 'CSV Header': ['col1', 'col2'] }
});

mappingFailed

event = {
    detail: {
        isValid,         // false
        missingRequired, // Array of missing required column names
        mappedTargets,   // Array of successfully mapped target columns
        mapping          // Current mapping object
    }
}

Triggered when mapping validation fails (e.g., required columns are missing):

csvMapper.addEventListener('mappingFailed', (e) => {
    console.log('Missing required columns:', e.detail.missingRequired);
    // Show user feedback about missing columns
});

mappingSuccess

event = {
    detail: {
        isValid,       // true
        mappedTargets, // Array of successfully mapped target columns
        mapping        // Current mapping object
    }
}

Triggered when mapping validation succeeds (all required columns are mapped):

csvMapper.addEventListener('mappingSuccess', (e) => {
    console.log('All required columns mapped successfully');
    // Enable submit button or continue processing
});

beforeMap

event = {
    detail: {
        csv // Current CSV object
    }
}

Triggered before validating the mapping. You can prevent the mapping process by calling preventDefault():

csvMapper.addEventListener('beforeMap', (e) => {
    if (someCondition) {
        e.preventDefault(); // Cancel mapping process
    }
});

afterMap

event = {
    detail: {
        csv,     // Current CSV object
        isValid  // Boolean indicating if mapping is valid
    }
}

Triggered after mapping validation is complete:

csvMapper.addEventListener('afterMap', (e) => {
    if (e.detail.isValid) {
        console.log('Mapping validation passed');
    } else {
        console.log('Mapping validation failed');
    }
});

beforeRemap

event = {
    detail: {
        csv // Current CSV object
    }
}

Triggered before remapping data. You can prevent the remapping process by calling preventDefault():

csvMapper.addEventListener('beforeRemap', (e) => {
    if (needsConfirmation) {
        e.preventDefault(); // Cancel remapping
    }
});

afterRemap

event = {
    detail: {
        rows, // Remapped data rows
        csv   // Generated CSV string
    }
}

Triggered after data remapping is complete:

csvMapper.addEventListener('afterRemap', (e) => {
    console.log('Remapped CSV:', e.detail.csv);
    // Upload to server or save locally
});

validationFailed

event = {
    detail: {
        data,       // Transformed CSV data object
        csv,        // Generated CSV string
        validation  // Validation result object with errors
    }
}

Triggered after remapping when there are validation errors in the data:

csvMapper.addEventListener('validationFailed', (e) => {
    console.log('Validation errors:', e.detail.validation.errors);
    console.log('Total errors:', e.detail.validation.totalErrors);
    console.log('Error rows:', e.detail.validation.errorRows);
    // Display validation errors to user
});

validationSuccess

event = {
    detail: {
        data,       // Transformed CSV data object
        csv,        // Generated CSV string
        validation  // Validation result object (no errors)
    }
}

Triggered after remapping when all data passes validation:

csvMapper.addEventListener('validationSuccess', (e) => {
    console.log('All data validated successfully');
    console.log('Total rows processed:', e.detail.validation.totalRows);
    // Proceed with data upload or processing
});

transformationFail

event = {
    detail: {
        rowIndex,    // Row number where error occurred
        columnName,  // Column name where error occurred
        value,       // Value that caused the error
        message      // Error message
    }
}

Triggered when a transformation error occurs during data processing. You can prevent the error from being rethrown by calling preventDefault():

csvMapper.addEventListener('transformationFail', (e) => {
    console.log(`Transformation error in row ${e.detail.rowIndex}, column ${e.detail.columnName}`);
    console.log(`Value: ${e.detail.value}, Error: ${e.detail.message}`);

    // Prevent error from being rethrown (continue processing)
    // e.preventDefault();
});

validationFail

event = {
    detail: {
        rowIndex,    // Row number where validation failed
        columnName,  // Column name where validation failed
        value,       // Value that failed validation
        message      // Validation error message
    }
}

Triggered when a single field validation fails during data processing:

csvMapper.addEventListener('validationFail', (e) => {
    console.log(`Validation error in row ${e.detail.rowIndex}, column ${e.detail.columnName}`);
    console.log(`Value: "${e.detail.value}" - ${e.detail.message}`);
    // Log validation errors for debugging
});

API Reference

Constructor

new CsvMapper(input?, options?)
  • input (string | HTMLElement | null): CSS selector or HTML element for file input
  • options (object): Configuration options

Methods

| Method | Description | Returns | |---|---|---| | mapCsv(csvText) | Process CSV text and return mapped result | MappedOutput | null | | setFile(file) | Set CSV file to process | Promise<void> | | setMapping(mapping) | Set column mapping programmatically | void | | getMapping() | Get current column mapping | object | | autoMap() | Automatically map columns using fuzzy matching | void | | render() | Re-render the UI controls | void | | destroy() | Clean up event listeners and DOM elements | void |

Result Object

The mapCsv() method returns a MappedOutput object:

{
    data: Csv,           // Transformed CSV data object
    csv: string,         // Generated CSV string
    validation: {        // Validation results
        errors: ValidationError[],
        totalRows: number,
        errorRows: number,
        totalErrors: number,
        errorsByField: object
    }
}

Troubleshooting

Common Issues

File not being processed

  • Ensure the file input has the correct accept attribute: accept=".csv"
  • Check that the file is actually a CSV (not Excel or other format)
  • Verify event listeners are attached before user interaction

Mapping UI not appearing

  • Make sure showUserControls is not set to false
  • Check that controlsContainer points to a valid DOM element
  • Ensure the CSV has headers (headers: true in options)

Validation errors not showing

  • Check that validation rules are correctly defined
  • Use validationFailed event to debug validation issues
  • Verify column names match between mapping and validation rules

Performance issues with large files

  • Consider processing files in chunks for very large CSVs (>10MB)
  • Use remap: false if you don't need the remapped file
  • Disable UI rendering for headless processing

Memory Considerations

  • Files larger than 50MB may cause memory issues in browsers
  • Consider server-side processing for very large files
  • Use streaming parsers for Node.js applications with massive datasets

Browser Compatibility

  • Modern browsers (Chrome 60+, Firefox 55+, Safari 12+, Edge 79+)
  • IE11 requires polyfills for Promise and other ES6 features
  • File API support required for file upload functionality

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Development Setup

git clone https://github.com/manticorp/csv-mapper.git
cd csv-mapper
npm install
npm run build
npm test

Running Tests

npm test                 # Run all tests
npm run test:watch       # Run tests in watch mode
npm run test:coverage    # Run tests with coverage report

Pushing Changes

Please run the following before making pull requests:

npm run prepublish

License

MIT License - see LICENSE file for details.