@mem0/openclaw-mem0
v0.1.0
Published
Mem0 memory backend for OpenClaw — platform or self-hosted open-source
Downloads
791
Readme
@mem0/openclaw-mem0
Long-term memory for OpenClaw agents, powered by Mem0.
Your agent forgets everything between sessions. This plugin fixes that. It watches conversations, extracts what matters, and brings it back when relevant — automatically.
How it works
Auto-Recall — Before the agent responds, the plugin searches Mem0 for memories that match the current message and injects them into context.
Auto-Capture — After the agent responds, the plugin sends the exchange to Mem0. Mem0 decides what's worth keeping — new facts get stored, stale ones updated, duplicates merged.
Both run silently. No prompting, no configuration, no manual calls.
Short-term vs long-term memory
Memories are organized into two scopes:
Session (short-term) — Auto-capture stores memories scoped to the current session via Mem0's
run_id/runIdparameter. These are contextual to the ongoing conversation and automatically recalled alongside long-term memories.User (long-term) — The agent can explicitly store long-term memories using the
memory_storetool (withlongTerm: true, the default). These persist across all sessions for the user.
During auto-recall, the plugin searches both scopes and presents them separately — long-term memories first, then session memories — so the agent has full context.
The agent tools (memory_search, memory_list) accept a scope parameter ("session", "long-term", or "all") to control which memories are queried. The memory_store tool accepts a longTerm boolean (default: true) to choose where to store.
All new parameters are optional and backward-compatible — existing configurations work without changes.
Setup
openclaw plugins install @mem0/openclaw-mem0Platform (Mem0 Cloud)
Get an API key from app.mem0.ai, then add to your openclaw.json:
// plugins.entries
"openclaw-mem0": {
"enabled": true,
"config": {
"apiKey": "${MEM0_API_KEY}",
"userId": "your-user-id"
}
}Open-Source (Self-hosted)
No Mem0 key needed. Requires OPENAI_API_KEY for default embeddings/LLM.
"openclaw-mem0": {
"enabled": true,
"config": {
"mode": "open-source",
"userId": "your-user-id"
}
}Sensible defaults out of the box. To customize the embedder, vector store, or LLM:
"config": {
"mode": "open-source",
"userId": "your-user-id",
"oss": {
"embedder": { "provider": "openai", "config": { "model": "text-embedding-3-small" } },
"vectorStore": { "provider": "qdrant", "config": { "host": "localhost", "port": 6333 } },
"llm": { "provider": "openai", "config": { "model": "gpt-4o" } }
}
}All oss fields are optional. See Mem0 OSS docs for providers.
Agent tools
The agent gets five tools it can call during conversations:
| Tool | Description |
|------|-------------|
| memory_search | Search memories by natural language |
| memory_list | List all stored memories for a user |
| memory_store | Explicitly save a fact |
| memory_get | Retrieve a memory by ID |
| memory_forget | Delete by ID or by query |
CLI
# Search all memories (long-term + session)
openclaw mem0 search "what languages does the user know"
# Search only long-term memories
openclaw mem0 search "what languages does the user know" --scope long-term
# Search only session/short-term memories
openclaw mem0 search "what languages does the user know" --scope session
# Stats
openclaw mem0 statsOptions
General
| Key | Type | Default | |
|-----|------|---------|---|
| mode | "platform" | "open-source" | "platform" | Which backend to use |
| userId | string | "default" | Scope memories per user |
| autoRecall | boolean | true | Inject memories before each turn |
| autoCapture | boolean | true | Store facts after each turn |
| topK | number | 5 | Max memories per recall |
| searchThreshold | number | 0.3 | Min similarity (0–1) |
Platform mode
| Key | Type | Default | |
|-----|------|---------|---|
| apiKey | string | — | Required. Mem0 API key (supports ${MEM0_API_KEY}) |
| orgId | string | — | Organization ID |
| projectId | string | — | Project ID |
| enableGraph | boolean | false | Entity graph for relationships |
| customInstructions | string | (built-in) | Extraction rules — what to store, how to format |
| customCategories | object | (12 defaults) | Category name → description map for tagging |
Open-source mode
Works with zero extra config. The oss block lets you swap out any component:
| Key | Type | Default | |
|-----|------|---------|---|
| customPrompt | string | (built-in) | Extraction prompt for memory processing |
| oss.embedder.provider | string | "openai" | Embedding provider ("openai", "ollama", etc.) |
| oss.embedder.config | object | — | Provider config: apiKey, model, baseURL |
| oss.vectorStore.provider | string | "memory" | Vector store ("memory", "qdrant", "chroma", etc.) |
| oss.vectorStore.config | object | — | Provider config: host, port, collectionName, dimension |
| oss.llm.provider | string | "openai" | LLM provider ("openai", "anthropic", "ollama", etc.) |
| oss.llm.config | object | — | Provider config: apiKey, model, baseURL, temperature |
| oss.historyDbPath | string | — | SQLite path for memory edit history |
Everything inside oss is optional — defaults use OpenAI embeddings (text-embedding-3-small), in-memory vector store, and OpenAI LLM. Override only what you need.
License
Apache 2.0
