@memberjunction/ai
v2.123.1
Published
MemberJunction: AI - core components for abstracting LLMs and other AI model types that are usable anywhere without ANY other MJ dependencies past @memberjunction/global which itself has zero additional dependencies.
Keywords
Readme
@memberjunction/ai
The MemberJunction AI Core package provides a comprehensive abstraction layer for working with various AI models (LLMs, Video and Audio Generation, Text-To-Speech (TTS), embedding models, etc.) in a provider-agnostic way, allowing your application to easily switch between different AI providers without refactoring your code.
Overview
This package serves as the foundation for all AI capabilities in the MemberJunction ecosystem. It defines abstract base classes and interfaces that are implemented by provider-specific packages, enabling seamless integration with various AI services while maintaining a consistent API.
Type Organization Update (2025)
As part of a major type reorganization to improve code organization and reduce circular dependencies:
- Core Package now contains:
- Base AI model abstractions (
BaseModel,BaseLLM,BaseEmbeddings, etc.) - Core AI result types (
BaseResult,ChatResult,ModelUsage, etc.) - Common interfaces and types used across all AI packages
- Base AI model abstractions (
- Agent-specific types have moved to
@memberjunction/ai-agents - Prompt-specific types remain in
@memberjunction/ai-prompts - Engine-specific types (like agent type definitions) are in
@memberjunction/aiengine
Standalone Usage
IMPORTANT: This package can be used completely independently from the rest of the MemberJunction framework:
- Zero database setup required
- No environment variables or other settings expected (you are responsible for this and pass in API keys to the constructors)
- Works in any TypeScript environment that can safely make API calls (e.g. don't use in browsers)
- Perfect for server-side applications, backend services, and CLI tools
The @memberjunction/ai package and all provider packages in @memberjunction/ai-* are designed to be lightweight, standalone modules that can be used in any TypeScript project.
Features
- Provider Abstraction: Work with AI models without tightly coupling to specific vendor APIs
- Runtime Optionality: Switch between AI providers at runtime based on configuration
- Base Classes: Abstract base classes for different AI model types (LLMs, embedding models, audio, video, etc.)
- Standard Interfaces: Consistent interfaces for common AI operations like chat, summarization, and classification
- Streaming Support: Stream responses from supported LLM providers for real-time UIs
- Parallel Processing: Execute multiple chat completions in parallel with progress callbacks
- Multi-modal Support: Handle text, images, videos, audio, and files in chat messages
- Type Definitions: Comprehensive TypeScript type definitions for all AI operations
- Error Handling: Standardized error handling and reporting across all providers
- Token Usage Tracking: Consistent tracking of token usage across providers
- Response Format Control: Specify output formats (Text, Markdown, JSON, or provider-specific)
- Additional Settings: Provider-specific configuration through a flexible settings system
Installation
npm install @memberjunction/aiThen install one or more provider packages:
npm install @memberjunction/ai-openai
npm install @memberjunction/ai-anthropic
npm install @memberjunction/ai-mistral
# etc.Usage
Provider-Agnostic Usage (Recommended)
For maximum flexibility, use the class factory approach to select the provider at runtime:
import { BaseLLM, ChatParams } from '@memberjunction/ai';
import { MJGlobal } from '@memberjunction/global';
// Required to stop tree-shaking of the MistralLLM - since there's no static code path to this class when using Class Factory pattern, you need this to prevent some bundlers from tree-shaking optimization on this class.
import { LoadMistralLLM } from '@memberjunction/ai-mistral';
LoadMistralLLM();
// Get an implementation of BaseLLM by provider name
const llm = MJGlobal.Instance.ClassFactory.CreateInstance<BaseLLM>(
BaseLLM,
'MistralLLM', // Provider class name
'your-api-key'
);
// Use the abstracted interface
const params: ChatParams = {
model: 'mistral-large-latest',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is AI abstraction?' }
]
};
const result = await llm.ChatCompletion(params);Environment-Based Provider Selection
Use environment variables or configuration to select the provider:
import { BaseLLM } from '@memberjunction/ai';
import { MJGlobal } from '@memberjunction/global';
import dotenv from 'dotenv';
// Required to stop tree-shaking of the OpenAILLM - since there's no static code path to this class when using Class Factory pattern, you need this to prevent some bundlers from tree-shaking optimization on this class.
import { LoadOpenAILLM } from '@memberjunction/ai-openai';
LoadOpenAILLM();
dotenv.config();
const providerName = process.env.AI_PROVIDER || 'OpenAILLM';
const apiKey = process.env.AI_API_KEY;
const llm = MJGlobal.Instance.ClassFactory.CreateInstance<BaseLLM>(
BaseLLM,
providerName,
apiKey
);Direct Provider Usage
When necessary, you can directly use a specific AI provider:
import { OpenAILLM } from '@memberjunction/ai-openai';
// Note with direct use of the OpenAILLM class no need for the LoadOpenAILLM call to prevent tree shaking since there is a static code path to the class
// Create an instance with your API key
const llm = new OpenAILLM('your-openai-api-key');
// Use the provider-specific implementation
const result = await llm.ChatCompletion({
model: 'gpt-4',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is AI abstraction?' }
]
});
console.log(result.data.choices[0].message.content);Core Abstractions
Base Models
BaseModel
The foundational abstract class for all AI models. Provides:
- Protected API key management
- Base parameter and result types
- Model usage tracking
BaseLLM
Abstract class for text generation models. Features:
- Standard and streaming chat completions
- Parallel chat completions with callbacks
- Text summarization
- Text classification
- Additional provider-specific settings management
- Response format control (Any, Text, Markdown, JSON, ModelSpecific)
- Support for reasoning budget tokens (for reasoning models)
- Advanced sampling parameters (see Parameter Reference below)
BaseEmbeddings
Abstract class for text embedding models. Provides:
- Single text embedding generation
- Batch text embedding generation
- Model listing capabilities
- Additional settings management
BaseAudioGenerator
Abstract class for audio processing models. Supports:
- Text-to-speech generation
- Speech-to-text transcription
- Voice listing and management
- Model and pronunciation dictionary queries
- Configurable voice settings (stability, similarity, speed, etc.)
BaseVideoGenerator
Abstract class for video generation models. Enables:
- Avatar-based video creation
- Video translation capabilities
- Avatar management and listing
BaseDiffusion
Abstract class for image generation models (placeholder for future implementation)
LLM Operations
Standard Chat Completion
For interactive conversations with AI models:
import { ChatParams, ChatResult, ChatMessage } from '@memberjunction/ai';
const params: ChatParams = {
model: 'your-model-name',
messages: [
{ role: 'system', content: 'System instruction' },
{ role: 'user', content: 'User message' },
{ role: 'assistant', content: 'Assistant response' }
],
temperature: 0.7,
maxOutputTokens: 1000
};
const result: ChatResult = await llm.ChatCompletion(params);Streaming Chat Completion
For real-time streaming of responses:
import { ChatParams, ChatResult, ChatMessage, StreamingChatCallbacks } from '@memberjunction/ai';
// Define the streaming callbacks
const callbacks: StreamingChatCallbacks = {
// Called when a new chunk arrives
OnContent: (chunk: string, isComplete: boolean) => {
if (isComplete) {
console.log("\nStream completed!");
} else {
// Print chunks as they arrive (or add to UI)
process.stdout.write(chunk);
}
},
// Called when the complete response is available
OnComplete: (finalResponse: ChatResult) => {
console.log("\nFull response:", finalResponse.data.choices[0].message.content);
console.log("Total tokens:", finalResponse.data.usage.totalTokens);
},
// Called if an error occurs during streaming
OnError: (error: any) => {
console.error("Streaming error:", error);
}
};
// Create streaming chat parameters
const params: ChatParams = {
model: 'gpt-4',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Write a short poem about AI, one line at a time.' }
],
streaming: true, // Enable streaming
streamingCallbacks: callbacks
};
// The ChatCompletion API remains the same, but will stream results
await llm.ChatCompletion(params);Cancellable Operations with AbortSignal
The MemberJunction AI Core package supports cancellation of long-running operations using the standard JavaScript AbortSignal pattern. This provides a clean, standardized way to cancel AI operations when needed.
Understanding the AbortSignal Pattern
The AbortSignal pattern uses a separation of concerns approach:
- Controller (Caller): Creates the
AbortControllerand decides when to cancel - Worker (AI Operations): Receives the
AbortSignaltoken and handles how to cancel
Basic Cancellation Example
import { ChatParams, BaseLLM } from '@memberjunction/ai';
async function cancellableAIChat() {
// Create the cancellation controller (the "boss")
const controller = new AbortController();
// Set up automatic timeout cancellation
const timeout = setTimeout(() => {
controller.abort(); // Cancel after 30 seconds
}, 30000);
try {
const params: ChatParams = {
model: 'gpt-4',
messages: [
{ role: 'user', content: 'Write a very long story...' }
],
cancellationToken: controller.signal // Pass the signal token
};
const result = await llm.ChatCompletion(params);
clearTimeout(timeout); // Clear timeout if completed successfully
return result;
} catch (error) {
if (error.message.includes('cancelled')) {
console.log('Operation was cancelled');
} else {
console.error('Operation failed:', error);
}
}
}User-Initiated Cancellation
Perfect for UI applications where users can cancel operations:
class AIInterface {
private currentController: AbortController | null = null;
async startAIConversation() {
// Create new controller for this conversation
this.currentController = new AbortController();
try {
const result = await llm.ChatCompletion({
model: 'gpt-4',
messages: [{ role: 'user', content: 'Generate a detailed report...' }],
cancellationToken: this.currentController.signal
});
console.log('AI Response:', result.data.choices[0].message.content);
} catch (error) {
if (error.message.includes('cancelled')) {
console.log('User cancelled the conversation');
}
} finally {
this.currentController = null;
}
}
// Called when user clicks "Cancel" button
cancelConversation() {
if (this.currentController) {
this.currentController.abort(); // Instant cancellation
}
}
}Multiple Cancellation Sources
One signal can be cancelled from multiple sources:
async function smartAIExecution() {
const controller = new AbortController();
const signal = controller.signal;
// 1. User cancel button
document.getElementById('cancel')?.addEventListener('click', () => {
controller.abort(); // User cancellation
});
// 2. Resource limit cancellation
if (await checkMemoryUsage() > MAX_MEMORY) {
controller.abort(); // Resource limit cancellation
}
// 3. Window unload cancellation
window.addEventListener('beforeunload', () => {
controller.abort(); // Page closing cancellation
});
// 4. Timeout cancellation
setTimeout(() => controller.abort(), 60000); // 1 minute timeout
try {
const result = await llm.ChatCompletion({
model: 'gpt-4',
messages: [{ role: 'user', content: 'Complex analysis task...' }],
cancellationToken: signal // One token, many cancel sources!
});
return result;
} catch (error) {
// The AI operation doesn't know WHY it was cancelled - just that it should stop
console.log('AI operation was cancelled:', error.message);
}
}How It Works Internally
The AI Core package implements cancellation at multiple levels:
- BaseLLM Level: Checks cancellation token before and during operations
- Provider Level: Native cancellation support where available (e.g., fetch API)
- Fallback Pattern: Promise.race for providers without native cancellation
// Internal implementation example (simplified)
async ChatCompletion(params: ChatParams): Promise<ChatResult> {
// Check if already cancelled before starting
if (params.cancellationToken?.aborted) {
throw new Error('Operation was cancelled');
}
// For providers with native cancellation support
if (this.hasNativeCancellation) {
return await this.callProviderAPI({
...params,
signal: params.cancellationToken // Native fetch cancellation
});
}
// Fallback: Promise.race pattern for other providers
const promises = [
this.callProviderAPI(params) // The actual AI call
];
if (params.cancellationToken) {
promises.push(
new Promise<never>((_, reject) => {
params.cancellationToken!.addEventListener('abort', () => {
reject(new Error('Operation was cancelled'));
});
})
);
}
return await Promise.race(promises);
}Key Benefits
- 🎯 Responsive UX: Users can cancel long-running AI operations instantly
- 💾 Resource Management: Prevent runaway operations from consuming resources
- 🔄 Composable: Easy to combine user actions, timeouts, and resource limits
- 📱 Standard API: Uses native JavaScript AbortSignal - no custom patterns
- 🧹 Clean Cleanup: Automatic resource cleanup when operations are cancelled
The cancellation token pattern provides a robust, standardized way to make AI operations responsive and resource-efficient!
Text Summarization
For summarizing longer text content:
import { SummarizeParams, SummarizeResult } from '@memberjunction/ai';
const params: SummarizeParams = {
text: 'Long text to summarize...',
model: 'your-model-name',
maxWords: 100
};
const result: SummarizeResult = await llm.SummarizeText(params);
console.log(result.summary);Text Classification
For categorizing text into predefined classes:
import { ClassifyParams, ClassifyResult } from '@memberjunction/ai';
const params: ClassifyParams = {
text: 'Text to classify',
model: 'your-model-name',
classes: ['Category1', 'Category2', 'Category3']
};
const result: ClassifyResult = await llm.ClassifyText(params);
console.log(result.classification);Response Format Control
Control the format of AI responses:
const params: ChatParams = {
// ...other parameters
responseFormat: 'JSON', // 'Any', 'Text', 'Markdown', 'JSON', or 'ModelSpecific'
};
// For provider-specific response formats
const customFormatParams: ChatParams = {
// ...other parameters
responseFormat: 'ModelSpecific',
modelSpecificResponseFormat: {
// Provider-specific format options
}
};Error Handling
Enhanced Error Information (v2.47.0+)
The MemberJunction AI Core package now provides rich, structured error information to enable intelligent retry logic and provider failover. All operations return results extending BaseResult which now includes detailed error information.
Basic Error Handling
const result = await llm.ChatCompletion(params);
if (!result.success) {
console.error('Error:', result.errorMessage);
console.error('Status Text:', result.statusText);
console.error('Exception:', result.exception);
console.error('Time Elapsed:', result.timeElapsed, 'ms');
} else {
console.log('Success! Response time:', result.timeElapsed, 'ms');
}Advanced Error Handling with Error Info
const result = await llm.ChatCompletion(params);
if (!result.success && result.errorInfo) {
const { errorInfo } = result;
console.log(`Error Type: ${errorInfo.errorType}`);
console.log(`HTTP Status: ${errorInfo.httpStatusCode}`);
console.log(`Severity: ${errorInfo.severity}`);
console.log(`Can Failover: ${errorInfo.canFailover}`);
// Handle based on error type
switch (errorInfo.errorType) {
case 'RateLimit':
// Wait and retry or switch providers
const delay = errorInfo.suggestedRetryDelaySeconds || 30;
console.log(`Rate limited. Retry after ${delay} seconds`);
break;
case 'Authentication':
// Fatal error - check API keys
console.error('Authentication failed. Check API key configuration.');
break;
case 'ServiceUnavailable':
// Try another provider
if (errorInfo.canFailover) {
console.log('Service unavailable. Switching to backup provider...');
}
break;
}
}Error Types
The package categorizes errors into the following types:
RateLimit: Rate limit exceeded (HTTP 429). Suggests switching providers or waitingAuthentication: Auth failure (HTTP 401/403). Usually indicates invalid API keyServiceUnavailable: Service down (HTTP 503). Provider temporarily unavailableInternalServerError: Server error (HTTP 500). Problem on provider's sideNetworkError: Connection issues, timeouts, DNS failuresInvalidRequest: Bad request format (HTTP 400). Problem with request parametersModelError: Model-specific issues (not found, overloaded)Unknown: Unclassified errors
Error Severity Levels
Errors are classified by severity to guide retry strategies:
Transient: Temporary error that may resolve with immediate retryRetriable: Error requiring waiting or provider switching before retryFatal: Permanent error that won't be resolved by retrying
Error Analysis Utility
The package includes an ErrorAnalyzer utility for providers to use:
import { ErrorAnalyzer } from '@memberjunction/ai';
try {
// Provider API call
} catch (error) {
const errorInfo = ErrorAnalyzer.analyzeError(error, 'OpenAI');
// errorInfo now contains structured error details
}Implementing Intelligent Failover
import { BaseLLM, ChatParams, AIErrorInfo } from '@memberjunction/ai';
class ResilientAIClient {
private providers: Array<{ name: string; llm: BaseLLM }> = [];
async chatWithFailover(params: ChatParams): Promise<ChatResult> {
for (const provider of this.providers) {
try {
const result = await provider.llm.ChatCompletion(params);
if (result.success) {
return result;
}
// Check if we should try another provider
if (result.errorInfo?.canFailover) {
console.log(`Provider ${provider.name} failed. Trying next...`);
continue;
} else {
// Fatal error - don't try other providers
return result;
}
} catch (error) {
console.error(`Provider ${provider.name} threw exception:`, error);
}
}
throw new Error('All providers failed');
}
}Retry with Backoff
async function retryWithBackoff(
operation: () => Promise<ChatResult>,
maxRetries: number = 3
): Promise<ChatResult> {
let lastResult: ChatResult;
for (let attempt = 1; attempt <= maxRetries; attempt++) {
lastResult = await operation();
if (lastResult.success) {
return lastResult;
}
const errorInfo = lastResult.errorInfo;
if (!errorInfo || errorInfo.severity === 'Fatal') {
// Don't retry fatal errors
return lastResult;
}
// Calculate delay
const delay = errorInfo.suggestedRetryDelaySeconds ||
Math.pow(2, attempt - 1) * 1000; // Exponential backoff
console.log(`Retry ${attempt}/${maxRetries} after ${delay}s...`);
await new Promise(resolve => setTimeout(resolve, delay * 1000));
}
return lastResult!;
}Token Usage Tracking
Monitor token usage consistently across different providers:
const result = await llm.ChatCompletion(params);
console.log('Prompt Tokens:', result.data.usage.promptTokens);
console.log('Completion Tokens:', result.data.usage.completionTokens);
console.log('Total Tokens:', result.data.usage.totalTokens);Available Providers
The following provider packages implement the MemberJunction AI abstractions:
@memberjunction/ai-openai- OpenAI (GPT models)@memberjunction/ai-anthropic- Anthropic (Claude models)@memberjunction/ai-mistral- Mistral AI@memberjunction/ai-gemini- Google's Gemini models@memberjunction/ai-vertex- Google Vertex AI (various models including Gemini, others)@memberjunction/ai-bedrock- Amazon Bedrock (Claude, Llama, Titan, etc.)@memberjunction/ai-groq- Groq's optimized inference (https://www.groq.com)@memberjunction/ai-bettybot- Betty AI (https://www.meetbetty.ai)@memberjunction/ai-azure- Azure AI Foundry with support for OpenAI, Mistral, Phi, more@memberjunction/ai-cerebras- Cerebras models@memberjunction/ai-elevenlabs- ElevenLabs audio models@memberjunction/ai-heygen- HeyGen video models
Note: Each provider implements the features they support. See individual provider documentation for specific capabilities.
Implementation Details
Streaming Architecture
The BaseLLM class uses a template method pattern for handling streaming:
- The main
ChatCompletionmethod checks if streaming is requested and supported - If streaming is enabled, it calls the template method
handleStreamingChatCompletion - Provider implementations supply three key methods:
createStreamingRequest: Creates the provider-specific streaming requestprocessStreamingChunk: Processes individual chunks from the streamfinalizeStreamingResponse: Creates the final response object
This architecture allows for a clean separation between common streaming logic and provider-specific implementations.
Import Examples
// Import base model classes
import { BaseLLM, BaseEmbeddings, BaseAudioGenerator } from '@memberjunction/ai';
// Import result types
import { ChatResult, ModelUsage, BaseResult } from '@memberjunction/ai';
// Import parameter types
import { ChatParams, ChatMessage, StreamingChatCallbacks } from '@memberjunction/ai';
// Import utility classes
import { AIAPIKeys, GetAIAPIKey } from '@memberjunction/ai';Dependencies
@memberjunction/global- MemberJunction global utilities including class factoryrxjs- Reactive extensions for JavaScript
Type Exports
The Core package exports fundamental types used throughout the AI ecosystem:
Base Model Classes
BaseModel- Foundation class for all AI modelsBaseLLM- Base class for language modelsBaseEmbeddings- Base class for embedding modelsBaseAudioGenerator- Base class for audio modelsBaseVideoGenerator- Base class for video modelsBaseDiffusion- Base class for image generation models
Core Result Types
BaseResult- Base result structure for all AI operationsChatResult- Result from chat completionsModelUsage- Token/resource usage trackingSummarizeResult- Text summarization resultsClassifyResult- Text classification resultsEmbeddingResult- Embedding generation results
Common Interfaces
ChatMessage- Message structure for conversationsChatParams- Parameters for chat operationsStreamingChatCallbacks- Callbacks for streaming responsesParallelChatCompletionsCallbacks- Callbacks for parallel execution
API Reference
Result Types
BaseResult
All operations return results extending BaseResult:
class BaseResult {
success: boolean;
startTime: Date;
endTime: Date;
errorMessage: string;
exception: any;
errorInfo?: AIErrorInfo; // Enhanced error details (v2.47.0+)
timeElapsed: number; // Computed getter
}
// Enhanced error information structure
interface AIErrorInfo {
httpStatusCode?: number; // HTTP status code (429, 500, etc.)
errorType: AIErrorType; // Categorized error type
severity: ErrorSeverity; // Transient, Retriable, or Fatal
suggestedRetryDelaySeconds?: number; // Provider-suggested retry delay
canFailover: boolean; // Whether switching providers might help
providerErrorCode?: string; // Original provider error code
context?: Record<string, any>; // Additional error context
}ChatResult
Extends BaseResult with chat-specific data:
class ChatResult extends BaseResult {
data: {
choices: Array<{
message: ChatCompletionMessage;
index: number;
finishReason?: string;
}>;
usage: ModelUsage;
};
statusText?: string;
}Chat Message Types
ChatMessage
Supports multi-modal content and optional typed metadata:
type ChatMessage<M = any> = {
role: 'system' | 'user' | 'assistant';
content: string | ChatMessageContentBlock[];
metadata?: M; // Optional typed metadata for extended functionality
}
type ChatMessageContentBlock = {
type: 'text' | 'image_url' | 'video_url' | 'audio_url' | 'file_url';
content: string; // URL or base64 encoded content
}Generic Metadata Parameter:
The ChatMessage type is now generic, allowing you to attach typed metadata to messages:
- The generic parameter defaults to
anyfor backward compatibility - Use
ChatMessage<MyMetadata>to specify a custom metadata type - This enables framework extensions (like agents) to add lifecycle metadata without modifying the core type
- Example: Agents use
ChatMessage<AgentChatMessageMetadata>to track message expiration, compaction, and expansion state
Streaming Callbacks
interface StreamingChatCallbacks {
OnContent?: (chunk: string, isComplete: boolean) => void;
OnComplete?: (finalResponse: ChatResult) => void;
OnError?: (error: any) => void;
}
interface ParallelChatCompletionsCallbacks {
OnCompletion?: (response: ChatResult, index: number) => void;
OnError?: (error: any, index: number) => void;
OnAllCompleted?: (responses: ChatResult[]) => void;
}Configuration
API Key Management
The package includes a flexible API key management system through the AIAPIKeys class:
import { GetAIAPIKey } from '@memberjunction/ai';
// Get API key for a specific provider
const apiKey = GetAIAPIKey('OpenAI');By default, it looks for environment variables with the pattern: AI_VENDOR_API_KEY__[PROVIDER_NAME]
Example:
AI_VENDOR_API_KEY__OPENAI=your-api-key
AI_VENDOR_API_KEY__ANTHROPIC=your-api-key
AI_VENDOR_API_KEY__MISTRAL=your-api-keyCustom API Key Management
You can extend the AIAPIKeys class to implement custom API key retrieval logic:
import { AIAPIKeys, RegisterClass } from '@memberjunction/ai';
@RegisterClass(AIAPIKeys, 'CustomAPIKeys', 2) // Priority 2 overrides default
export class CustomAPIKeys extends AIAPIKeys {
public GetAPIKey(AIDriverName: string): string {
// Your custom logic here
// Could retrieve from database, vault, etc.
return super.GetAPIKey(AIDriverName); // Fallback to default
}
}Runtime API Key Override
As of v2.50.0, you can provide API keys at runtime without modifying environment variables or global configuration. This is useful for multi-tenant applications or testing with different API keys.
Direct Constructor Usage
When creating AI model instances directly, pass the API key to the constructor:
import { OpenAILLM } from '@memberjunction/ai-openai';
const llm = new OpenAILLM('sk-your-runtime-api-key');With Class Factory Pattern
When using the class factory pattern, the API key is passed as the second parameter:
import { BaseLLM } from '@memberjunction/ai';
import { MJGlobal } from '@memberjunction/global';
const llm = MJGlobal.Instance.ClassFactory.CreateInstance<BaseLLM>(
BaseLLM,
'OpenAILLM',
'sk-your-runtime-api-key' // Runtime API key
);API Key Type Definition
The package exports an AIAPIKey interface for structured API key configuration:
export interface AIAPIKey {
/**
* The driver class name (e.g., 'OpenAILLM', 'AnthropicLLM', 'GroqLLM')
* This should match the exact driver class name used by the AI provider
*/
driverClass: string;
/**
* The API key value for the specified driver class
*/
apiKey: string;
}Provider-Specific Settings
Many providers support additional configuration beyond the API key:
const llm = new SomeLLM('api-key');
llm.SetAdditionalSettings({
baseURL: 'https://custom-endpoint.com',
organization: 'my-org',
// Provider-specific settings
});Integration with MemberJunction
While this package can be used standalone, it integrates seamlessly with the MemberJunction framework:
- Uses
@memberjunction/globalfor class factory pattern and registration - Compatible with MemberJunction's metadata system
- Can leverage MemberJunction's configuration management when available
Dependencies
@memberjunction/global(^2.43.0) - MemberJunction global utilities including class factoryrxjs(^7.8.1) - Reactive extensions for JavaScript (used in streaming implementations)dotenv(^16.4.1) - Environment variable managementtypeorm(^0.3.20) - ORM functionality (optional, only if using with full MemberJunction)
Development
Building
cd packages/AI/Core
npm run buildTypeScript Configuration
The package is configured with TypeScript strict mode and targets ES2022. See tsconfig.json for full compiler options.
Best Practices
- Always use the class factory pattern for maximum flexibility
- Handle errors gracefully - check
result.successbefore accessing data - Monitor token usage to manage costs and stay within limits
- Use streaming for long responses to improve user experience
- Leverage parallel completions for comparison or reliability
- Cache API keys using the built-in caching mechanism
- Specify response formats when you need structured output
Troubleshooting
Common Issues
"API key cannot be empty" error
- Ensure you're passing a valid API key to the constructor
- Check environment variables are properly set
Provider not found when using class factory
- Make sure to import and call the provider's Load function
- Verify the provider class name matches exactly
Streaming not working
- Check if the provider supports streaming (
llm.SupportsStreaming) - Ensure streaming callbacks are properly defined
- Check if the provider supports streaming (
Type errors with content blocks
- Use the provided type guards and interfaces
- Ensure content format matches the expected structure
Parameter Reference
ChatParams Parameters
The ChatParams class supports the following parameters for controlling LLM behavior:
Core Parameters (from BaseParams)
model(required): The model name to usetemperature: Controls randomness (0.0 = deterministic, 2.0 = very random)maxOutputTokens: Maximum tokens to generate in responseresponseFormat: Output format - 'Any', 'Text', 'Markdown', 'JSON', or 'ModelSpecific'seed: Random seed for reproducible outputs (provider-dependent)stopSequences: Array of sequences that will stop generation
Sampling Parameters
topP: Top-p (nucleus) sampling (0-1). Alternative to temperature, considers cumulative probabilitytopK: Top-k sampling. Limits to top K most likely tokens (provider-dependent)minP: Minimum probability threshold (0-1). Filters out low-probability tokens
Repetition Control
frequencyPenalty: Reduce token repetition based on frequency (-2.0 to 2.0)presencePenalty: Encourage topic diversity (-2.0 to 2.0)
Advanced Features
streaming: Enable streaming responsesincludeLogProbs: Request log probabilities for tokenstopLogProbs: Number of top log probabilities to return (2-20)effortLevel: Model-specific effort/reasoning levelreasoningBudgetTokens: Token budget for reasoning modelsenableCaching: Enable provider caching featurescancellationToken: AbortSignal for cancelling operations
Provider Support
Not all providers support all parameters. The framework will:
- Pass supported parameters to the provider
- Log warnings for unsupported parameters (visible in console)
- Continue execution without failing
Common support patterns:
- OpenAI: Supports most parameters except topK, minP
- Anthropic: Supports topP, topK, but not frequency/presence penalties
- Google/Gemini: Supports topP, topK, temperature
- Others: Vary by provider - check console warnings
License
See the repository root for license information.
