npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@memberjunction/ai-vectors-pinecone

v2.123.1

Published

MemberJunction: Pinecone Implementation for AI Vectors

Readme

@memberjunction/ai-vectors-pinecone

A MemberJunction implementation of vector database services using Pinecone as the backend. This package provides a standardized interface for working with vector embeddings, vector search, and other vector operations within the MemberJunction ecosystem.

Features

  • Pinecone Integration: Seamless integration with Pinecone's vector database
  • Standardized Interface: Follows MemberJunction's VectorDBBase abstract class
  • Index Management: Create, delete, and query vector indexes
  • Record Operations: Comprehensive CRUD operations for vector records
  • Namespace Support: Work with namespaces for organization within indexes
  • Metadata Storage: Store and query with metadata alongside vector embeddings
  • Configuration Management: Environment-based configuration options
  • Auto-registration: Automatically registers with MemberJunction's class factory system

Installation

npm install @memberjunction/ai-vectors-pinecone

Requirements

  • Node.js 16+
  • A Pinecone API key and account
  • MemberJunction Core libraries

Configuration

Create a .env file with your Pinecone credentials:

# Pinecone Configuration
PINECONE_API_KEY=your-pinecone-api-key
PINECONE_HOST=your-pinecone-host
PINECONE_DEFAULT_INDEX=your-default-index-name

# Optional: For embedding generation
OPENAI_API_KEY=your-openai-api-key

# Optional: Database configuration (if using with MemberJunction sync)
DB_HOST=your-database-host
DB_PORT=1433
DB_USERNAME=your-db-username
DB_PASSWORD=your-db-password
DB_DATABASE=your-database-name

Usage

Initialize the Pinecone Client

import { PineconeDatabase } from '@memberjunction/ai-vectors-pinecone';

// Initialize with your Pinecone API key
const pineconeDB = new PineconeDatabase('your-pinecone-api-key');

List Available Indexes

// Get a list of all available indexes
const indexList = await pineconeDB.listIndexes();
console.log('Available indexes:', indexList.indexes.map(idx => idx.name));

Create a New Index

// Create a new vector index with serverless configuration
const createResult = await pineconeDB.createIndex({
  id: 'my-new-index',
  dimension: 1536,  // Dimension for OpenAI embeddings
  metric: 'cosine', // 'cosine' | 'euclidean' | 'dotproduct'
  additionalParams: { 
    // Pinecone spec object
    serverless: { 
      cloud: 'aws', 
      region: 'us-west-2'
    }
  }
});

if (createResult.success) {
  console.log('Index created successfully');
} else {
  console.error('Failed to create index:', createResult.message);
}

// Get index description
const description = await pineconeDB.getIndexDescription({ id: 'my-new-index' });
console.log('Index details:', description);

Insert Vector Records

import { VectorRecord } from '@memberjunction/ai-vectors';

// Create a single vector record
const vectorRecord: VectorRecord = {
  id: 'record-123',
  values: [0.1, 0.2, 0.3, /* ... rest of vector values */],
  metadata: {
    RecordID: '123',
    Entity: 'Customer',
    TemplateID: 'customer-profile',
    // Additional metadata as needed
  }
};

const insertResult = await pineconeDB.createRecord(vectorRecord);

if (insertResult.success) {
  console.log('Record inserted successfully');
}

Insert Multiple Records at Once

// Create multiple vector records in a single operation
const vectorRecords: VectorRecord[] = [
  {
    id: 'record-123',
    values: [/* vector values */],
    metadata: { RecordID: '123', Entity: 'Customer', TemplateID: 'template-1' }
  },
  {
    id: 'record-124',
    values: [/* vector values */],
    metadata: { RecordID: '124', Entity: 'Customer', TemplateID: 'template-1' }
  }
];

const batchInsertResult = await pineconeDB.createRecords(vectorRecords);

Query Vector Records

// Query vectors by similarity
const queryResult = await pineconeDB.queryIndex({
  vector: [0.1, 0.2, 0.3, /* ... rest of query vector */],
  topK: 5,
  includeMetadata: true,
  filter: {
    Entity: { $eq: 'Customer' }
  }
});

if (queryResult.success) {
  console.log('Query results:', queryResult.data.matches);
  
  // Process the matching records
  queryResult.data.matches.forEach(match => {
    console.log(`Match ID: ${match.id}, Score: ${match.score}`);
    console.log('Metadata:', match.metadata);
  });
}

Retrieve Specific Records

// Fetch specific records by IDs
const getRecordResult = await pineconeDB.getRecord({
  id: 'my-index-name',  // Optional - uses default if not specified
  data: ['record-123']  // Array of record IDs to fetch
});

if (getRecordResult.success) {
  console.log('Retrieved records:', getRecordResult.data);
}

// Fetch multiple records at once
const getMultipleResult = await pineconeDB.getRecords({
  data: ['record-123', 'record-124', 'record-125']
});

if (getMultipleResult.success) {
  console.log('Retrieved records:', getMultipleResult.data);
}

Update Records

// Update a record's values and/or metadata
const updateResult = await pineconeDB.updateRecord({
  data: {
    id: 'record-123',
    values: [0.2, 0.3, 0.4, /* ... new vector values */],
    setMetadata: {
      // Metadata fields to update
      TemplateID: 'updated-template'
    }
  }
});

if (updateResult.success) {
  console.log('Record updated successfully');
}

Delete Records

// Delete a single record
const deleteResult = await pineconeDB.deleteRecord({
  id: 'record-123'
});

// Delete multiple records
const deleteMultipleResult = await pineconeDB.deleteRecords([
  { id: 'record-123' },
  { id: 'record-124' }
]);

// Delete all records in an index or namespace
const deleteAllResult = await pineconeDB.deleteAllRecords({
  id: 'my-index-name',  // Optional - uses default if not specified
  data: 'my-namespace'  // Optional - if provided, only deletes in this namespace
});

Working with Namespaces

Pinecone supports namespaces for organizing vectors within an index. This is useful for multi-tenancy or logical separation of data:

// Query within a specific namespace
const namespaceQuery = await pineconeDB.queryIndex({
  vector: [/* query vector */],
  topK: 10,
  namespace: 'customer-data',
  includeMetadata: true
});

// Delete all records in a specific namespace
const deleteNamespace = await pineconeDB.deleteAllRecords({
  data: 'customer-data'  // Deletes only in this namespace
});

Advanced Metadata Filtering

// Query with complex metadata filters
const filteredQuery = await pineconeDB.queryIndex({
  vector: [/* query vector */],
  topK: 5,
  filter: {
    // Pinecone filter syntax
    $and: [
      { Entity: { $eq: 'Customer' } },
      { TemplateID: { $in: ['template-1', 'template-2'] } },
      { RecordID: { $gte: '100' } }
    ]
  },
  includeMetadata: true,
  includeValues: false  // Don't return vector values to save bandwidth
});

API Reference

PineconeDatabase Class

The main class that implements the VectorDBBase abstract class for Pinecone.

Constructor

new PineconeDatabase(apiKey: string)

Properties

  • pinecone: Returns the underlying Pinecone client instance

Methods

Index Management
  • listIndexes(): List all available indexes
  • getIndexDescription(params): Get detailed information about an index
  • createIndex(options): Create a new vector index
  • deleteIndex(params): Delete an index
  • getIndex(params?): Get a reference to an index (uses default if not specified)
  • getDefaultIndex(): Get the default index based on config or first available
Record Operations
  • createRecord(params): Insert a single vector record
  • createRecords(records): Insert multiple vector records
  • getRecord(params): Retrieve records by ID(s)
  • getRecords(params): Retrieve multiple records by ID(s)
  • updateRecord(params): Update a single record's values and/or metadata
  • deleteRecord(record): Delete a specific record
  • deleteRecords(records): Delete multiple records
  • deleteAllRecords(params): Delete all records in an index or namespace
Querying
  • queryIndex(params): Query vectors by similarity
Not Implemented
  • editIndex(params): Edit index configuration (throws error)
  • updateRecords(params): Batch update records (throws error)

Key Interfaces

VectorRecord

interface VectorRecord {
  id: string;
  values: number[];
  metadata?: RecordMetadata;
  sparseValues?: { indices: number[]; values: number[] };
}

BaseRequestParams

interface BaseRequestParams {
  id?: string;     // Index name (uses default if not provided)
  data?: any;      // Additional data for the operation
}

CreateIndexParams

interface CreateIndexParams {
  id: string;             // Index name
  dimension: number;      // Vector dimension
  metric?: string;        // Distance metric (cosine, euclidean, dotproduct)
  additionalParams?: any; // Additional Pinecone-specific parameters (spec object)
}

QueryOptions (Pinecone)

interface QueryOptions {
  vector: number[];         // Query vector
  topK: number;             // Number of results to return
  filter?: object;          // Metadata filter
  includeValues?: boolean;  // Include vector values in response
  includeMetadata?: boolean;// Include metadata in response
  namespace?: string;       // Namespace to query
}

BaseMetadata

type BaseMetadata = {
  RecordID: string;
  Entity: string;
  TemplateID: string;
}

Environment Variables

| Variable | Description | |----------|-------------| | PINECONE_API_KEY | Your Pinecone API key (required) | | PINECONE_HOST | Your Pinecone host URL (optional) | | PINECONE_DEFAULT_INDEX | Default index name to use if not specified (optional) | | OPENAI_API_KEY | Optional: OpenAI API key for generating embeddings | | DB_HOST | Optional: Database host for MemberJunction sync | | DB_PORT | Optional: Database port (defaults to 1433) | | DB_USERNAME | Optional: Database username | | DB_PASSWORD | Optional: Database password | | DB_DATABASE | Optional: Database name | | CURRENT_USER_EMAIL | Optional: Current user email for context | | MISTRAL_API_KEY | Optional: Mistral API key for embeddings |

Integration with MemberJunction Vectors

This package works seamlessly with other MemberJunction vector packages:

import { PineconeDatabase, LoadPineconeVectorDB } from '@memberjunction/ai-vectors-pinecone';
import { OpenAIEmbedding } from '@memberjunction/ai-openai';
import { VectorSync } from '@memberjunction/ai-vectors-sync';

// Ensure the PineconeDatabase class is registered
LoadPineconeVectorDB();

// Set up your vector database
const vectorDB = new PineconeDatabase(pineconeAPIKey);

// Set up your embedding provider
const embeddingProvider = new OpenAIEmbedding(openAIAPIKey);

// Use with VectorSync for entity synchronization
const vectorSync = new VectorSync({
  vectorDB: vectorDB,
  embeddingProvider: embeddingProvider,
  // other configuration...
});

Class Registration

The PineconeDatabase class automatically registers itself with MemberJunction's class factory system using the @RegisterClass decorator. This allows it to be dynamically instantiated by the MemberJunction framework when needed.

To ensure the class is not removed by tree shaking, import the LoadPineconeVectorDB function in your application initialization:

import { LoadPineconeVectorDB } from '@memberjunction/ai-vectors-pinecone';

// Call this in your app initialization
LoadPineconeVectorDB();

Error Handling and Best Practices

Error Handling

All methods return a BaseResponse object with success/failure status:

const result = await pineconeDB.createRecord(vectorRecord);

if (result.success) {
  console.log('Operation successful:', result.data);
} else {
  console.error('Operation failed:', result.message);
  // Handle error appropriately
}

Best Practices

  1. Index Management

    • Always check if an index exists before creating it
    • Use meaningful index names that reflect their purpose
    • Consider using namespaces for multi-tenant applications
  2. Vector Dimensions

    • Ensure vector dimensions match your embedding model
    • OpenAI embeddings typically use 1536 dimensions
    • Mistral and other models may use different dimensions
  3. Metadata Design

    • Keep metadata lightweight to optimize performance
    • Use the BaseMetadata type as a foundation
    • Add indexes on frequently queried metadata fields
  4. Batch Operations

    • Use createRecords() for bulk inserts (more efficient than individual inserts)
    • Pinecone supports up to 100 vectors per batch operation
    • Consider chunking larger datasets
  5. Query Optimization

    • Use metadata filters to reduce search space
    • Set includeValues: false if you don't need vector values
    • Adjust topK based on your use case
  6. Connection Management

    • Reuse PineconeDatabase instances rather than creating new ones
    • The default index is cached after first retrieval

Dependencies

  • @memberjunction/ai-vectors: Base abstractions for vector databases
  • @memberjunction/aiengine: MemberJunction AI Engine
  • @memberjunction/core: MemberJunction core library
  • @memberjunction/global: MemberJunction global utilities and class registration
  • @pinecone-database/pinecone: Official Pinecone client (v2.2.2)
  • dotenv: Environment variable management
  • openai: OpenAI SDK for embeddings
  • rxjs: Reactive programming library
  • typeorm: TypeORM for database operations

Troubleshooting

Common Issues

  1. "PINECONE_API_KEY not found"

    • Ensure your .env file is in the project root
    • Check that the environment variable is properly set
    • Verify the API key is valid in your Pinecone dashboard
  2. "Index not found"

    • Verify the index exists using listIndexes()
    • Check that PINECONE_DEFAULT_INDEX matches an existing index
    • Ensure the index has finished initializing after creation
  3. "Dimension mismatch"

    • Ensure your vector dimensions match the index configuration
    • OpenAI ada-002 embeddings are 1536 dimensions
    • Check your embedding model's output dimensions
  4. Connection timeouts

    • Verify your network connectivity
    • Check Pinecone service status
    • Ensure your API key has proper permissions
  5. Tree shaking removes the class

    • Always call LoadPineconeVectorDB() in your initialization code
    • This prevents the class from being removed during optimization

License

ISC