@messari/sdk-ts-mcp
v0.4.0
Published
The official MCP Server for the Messari SDK API
Downloads
23
Maintainers
Keywords
Readme
Messari SDK TypeScript MCP Server
It is generated with Stainless.
Installation
Direct invocation
You can run the MCP Server directly via npx:
export MESSARI_SDK_API_KEY="My API Key"
npx -y @messari/sdk-ts-mcp@latestVia MCP Client
There is a partial list of existing clients at modelcontextprotocol.io. If you already have a client, consult their documentation to install the MCP server.
For clients with a configuration JSON, it might look something like this:
{
"mcpServers": {
"messari_sdk_ts_api": {
"command": "npx",
"args": ["-y", "@messari/sdk-ts-mcp", "--client=claude", "--tools=dynamic"],
"env": {
"MESSARI_SDK_API_KEY": "My API Key"
}
}
}
}Exposing endpoints to your MCP Client
There are two ways to expose endpoints as tools in the MCP server:
- Exposing one tool per endpoint, and filtering as necessary
- Exposing a set of tools to dynamically discover and invoke endpoints from the API
Filtering endpoints and tools
You can run the package on the command line to discover and filter the set of tools that are exposed by the MCP Server. This can be helpful for large APIs where including all endpoints at once is too much for your AI's context window.
You can filter by multiple aspects:
--toolincludes a specific tool by name--resourceincludes all tools under a specific resource, and can have wildcards, e.g.my.resource*--operationincludes just read (get/list) or just write operations
Dynamic tools
If you specify --tools=dynamic to the MCP server, instead of exposing one tool per endpoint in the API, it will
expose the following tools:
list_api_endpoints- Discovers available endpoints, with optional filtering by search queryget_api_endpoint_schema- Gets detailed schema information for a specific endpointinvoke_api_endpoint- Executes any endpoint with the appropriate parameters
This allows you to have the full set of API endpoints available to your MCP Client, while not requiring that all of their schemas be loaded into context at once. Instead, the LLM will automatically use these tools together to search for, look up, and invoke endpoints dynamically. However, due to the indirect nature of the schemas, it can struggle to provide the correct properties a bit more than when tools are imported explicitly. Therefore, you can opt-in to explicit tools, the dynamic tools, or both.
See more information with --help.
All of these command-line options can be repeated, combined together, and have corresponding exclusion versions (e.g. --no-tool).
Use --list to see the list of available tools, or see below.
Specifying the MCP Client
Different clients have varying abilities to handle arbitrary tools and schemas.
You can specify the client you are using with the --client argument, and the MCP server will automatically
serve tools and schemas that are more compatible with that client.
--client=<type>: Set all capabilities based on a known MCP client- Valid values:
openai-agents,claude,claude-code,cursor - Example:
--client=cursor
- Valid values:
Additionally, if you have a client not on the above list, or the client has gotten better over time, you can manually enable or disable certain capabilities:
--capability=<name>: Specify individual client capabilities- Available capabilities:
top-level-unions: Enable support for top-level unions in tool schemasvalid-json: Enable JSON string parsing for argumentsrefs: Enable support for $ref pointers in schemasunions: Enable support for union types (anyOf) in schemasformats: Enable support for format validations in schemas (e.g. date-time, email)tool-name-length=N: Set maximum tool name length to N characters
- Example:
--capability=top-level-unions --capability=tool-name-length=40 - Example:
--capability=top-level-unions,tool-name-length=40
- Available capabilities:
Examples
- Filter for read operations on cards:
--resource=cards --operation=read- Exclude specific tools while including others:
--resource=cards --no-tool=create_cards- Configure for Cursor client with custom max tool name length:
--client=cursor --capability=tool-name-length=40- Complex filtering with multiple criteria:
--resource=cards,accounts --operation=read --tag=kyc --no-tool=create_cardsImporting the tools and server individually
// Import the server, generated endpoints, or the init function
import { server, endpoints, init } from "@messari/sdk-ts-mcp/server";
// import a specific tool
import generateCompletionOpenAIAIChat from "@messari/sdk-ts-mcp/tools/ai/openai/chat/generate-completion-openai-ai-chat";
// initialize the server and all endpoints
init({ server, endpoints });
// manually start server
const transport = new StdioServerTransport();
await server.connect(transport);
// or initialize your own server with specific tools
const myServer = new McpServer(...);
// define your own endpoint
const myCustomEndpoint = {
tool: {
name: 'my_custom_tool',
description: 'My custom tool',
inputSchema: zodToJsonSchema(z.object({ a_property: z.string() })),
},
handler: async (client: client, args: any) => {
return { myResponse: 'Hello world!' };
})
};
// initialize the server with your custom endpoints
init({ server: myServer, endpoints: [generateCompletionOpenAIAIChat, myCustomEndpoint] });Available Tools
The following tools are available in this MCP server.
Resource ai.openai.chat:
generate_completion_openai_ai_chat(write): Processes a conversation and returns an AI-generated response in OpenAI-compatible format. Consumes 5 credits per request.
Resource ai.v1.agent:
generate_signal_v1_ai_agent(write): Provides crypto market and social signals by processing user queries through an LLM that accesses Messari's research and data. Consumes 1 credit per request.
Resource ai.v1.classification:
extract_entities_v1_ai_classification(write): Extract entities from a user message by calling an LLM and doing searches in the internal database. Consumes 1 credit per request.
Resource ai.v2.chat:
create_completion_v2_ai_chat(write): Processes a conversation and returns an AI-generated response with Messari's standard format. Consumes 5 credits per request.
Resource funding.v1:
list_acquisition_deals_funding_v1(read): Lookup M&A Deals given a set of filters.list_organizations_funding_v1(read): Lookup Organizations given a set of filters.list_projects_funding_v1(read): Lookup Projects given a set of filters.
Resource funding.v1.funds:
list_v1_funding_funds(read): Lookup Funds given a set of filters.list_managers_v1_funding_funds(read): Lookup the Managers of a set of Funds defined by the filters. Filters are applied to the Funds, and then their Managers are returned.
Resource funding.v1.rounds:
list_v1_funding_rounds(read): Lookup Funding Rounds given a set of filters.list_investors_v1_funding_rounds(read): Lookup Investors that participated in a set of Funding Rounds given a set of filters. Filters are applied to the Funding Rounds, and then their Investors are returned.
Resource metrics.v1.exchanges:
retrieve_v1_metrics_exchanges(read): Retrieve a specific exchangelist_v1_metrics_exchanges(read): Retrieve a list of exchanges
Resource metrics.v1.exchanges.metrics:
list_exchanges_v1_metrics_metrics(read): Get metric catalog of datasets for exchanges.
Resource metrics.v1.exchanges.metrics.time_series:
retrieve_metrics_exchanges_v1_metrics_time_series(read): Retrieve a specific exchange's timeseries dataretrieve_with_granularity_metrics_exchanges_v1_metrics_time_series(read): Retrieve a specific exchange's timeseries data
Resource metrics.v1.markets:
retrieve_v1_metrics_markets(read): Retrieve a specific marketlist_v1_metrics_markets(read): Retrieve a list of markets
Resource metrics.v1.markets.metrics:
list_markets_v1_metrics_metrics(read): Get metric catalog of datasets for markets.
Resource metrics.v1.markets.metrics.time_series:
retrieve_metrics_markets_v1_metrics_time_series(read): Retrieve a specific market's timeseries dataretrieve_with_granularity_metrics_markets_v1_metrics_time_series(read): Retrieve a specific market's timeseries data
Resource metrics.v1.networks:
retrieve_v1_metrics_networks(read): Retrieve a specific networklist_v1_metrics_networks(read): Retrieve a list of networks
Resource metrics.v2.assets:
list_v2_metrics_assets(read): Retrieve a list of assetsretrieve_ath_v2_metrics_assets(read): Retrieve a specific asset's ATHretrieve_details_v2_metrics_assets(read): Retrieve a specific asset's detailsretrieve_roi_v2_metrics_assets(read): Retrieve a specific asset's ROI
Resource metrics.v2.assets.metrics:
list_assets_v2_metrics_metrics(read): Get metric catalog of datasets for assets.
Resource metrics.v2.assets.metrics.time_series:
retrieve_metrics_assets_v2_metrics_time_series(read): Retrieve a specific asset's timeseries dataretrieve_with_granularity_metrics_assets_v2_metrics_time_series(read): Retrieve a specific asset's timeseries data
Resource metrics.v2.networks:
list_v2_metrics_networks(read): Retrieve a list of networks
Resource metrics.v2.networks.metrics:
list_networks_v2_metrics_metrics(read): Get metric catalog of datasets for networks.
Resource metrics.v2.networks.metrics.time_series:
retrieve_metrics_networks_v2_metrics_time_series(read): Retrieve a specific network's timeseries dataretrieve_with_granularity_metrics_networks_v2_metrics_time_series(read): Retrieve a specific network's timeseries data
Resource news.v1.news:
list_assets_v1_news_news(read): Get News Feed Assetslist_sources_v1_news_news(read): Get News Sourcesretrieve_feed_v1_news_news(read): Gets the news feed for the user
Resource token_unlocks.v1:
get_allocations_token_unlocks_v1(read): Returns allocation information given a set of asset IDs and optional filters
Resource token_unlocks.v1.assets:
list_v1_token_unlocks_assets(read): Returns assets with allocation information given a set of filtersget_events_v1_token_unlocks_assets(read): Returns unlock events for a given assetget_unlocks_v1_token_unlocks_assets(read): Returns interval-based unlock timeseries data for a given asset and intervalget_vesting_schedule_v1_token_unlocks_assets(read): Returns vesting schedule timeseries data for a given asset
Resource user_management.v1.api:
list_permissions_v1_user_management_api(read): Returns all available permissions with flags indicating which ones are granted to the current user
Resource user_management.v1.api.credits:
get_allowance_api_v1_user_management_credits(read): Returns the current credit allowance for the team
Resource user_management.v1.watchlists:
create_watchlist_v1_user_management_watchlists(write): Create a new watchlist for the authenticated userdelete_watchlist_v1_user_management_watchlists(write): Delete a specific watchlist by ID for the authenticated userget_watchlist_v1_user_management_watchlists(read): Get a specific watchlist by ID for the authenticated userlist_watchlists_v1_user_management_watchlists(read): Get all watchlists for the authenticated usermodify_watchlist_assets_v1_user_management_watchlists(write): Modify the assets in a specific watchlist by ID for the authenticated user
Resource signal.v0.assets:
retrieve_v0_signal_assets(read): Retrieve a specific assetlist_v0_signal_assets(read): Retrieve a list of Assets
Resource signal.v0.assets.time_series.mindshare:
retrieve_time_series_assets_v0_signal_mindshare(read): Retrieve a specific asset's mindshare timeseries dataretrieve_with_granularity_time_series_assets_v0_signal_mindshare(read): Retrieve a specific asset's mindshare timeseries data
Resource signal.v0.topics:
list_classes_v0_signal_topics(read): Retrieve a list of topic classes
Resource signal.v0.topics.global:
list_current_topics_v0_signal_global(read): Retrieve a list of current global topicslist_daily_topics_v0_signal_global(read): Retrieve a timeseries of global topics
Resource signal.v0.x_users:
retrieve_v0_signal_x_users(read): Retrieve a specific X Userlist_v0_signal_x_users(read): Get a list of X users
Resource signal.v0.x_users.time_series:
retrieve_engagement_x_users_v0_signal_time_series(read): Retrieve a specific X User's engagement timeseries dataretrieve_mindshare_with_granularity_x_users_v0_signal_time_series(read): Retrieve a specific X User's mindshare timeseries data
