npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@neureus/sdk

v0.2.1

Published

Neureus Platform SDK - AI-native, edge-first application platform

Readme

@neureus/sdk

Official TypeScript/JavaScript SDK for the Neureus AI Platform

npm version License: MIT

Overview

The Neureus SDK provides a unified interface to interact with the Neureus AI Platform's services:

  • AI Gateway: Multi-provider LLM routing with automatic fallback
  • Vector Database: Lightning-fast vector search powered by HNSW
  • RAG Pipeline: Complete document Q&A with retrieval-augmented generation

Installation

npm install @neureus/sdk
# or
pnpm add @neureus/sdk
# or
yarn add @neureus/sdk

Quick Start

Unified Client

import { NeureusClient } from '@neureus/sdk';

const neureus = new NeureusClient({
  apiKey: process.env.NEUREUS_API_KEY
});

// AI Gateway - Chat with any LLM
const response = await neureus.ai.chat.create([
  { role: 'user', content: 'What is Neureus?' }
]);

// Vector Database - Semantic search
const results = await neureus.vector.search({
  vector: embedding,
  topK: 5,
  minSimilarity: 0.7
});

// RAG Pipeline - Document Q&A
const answer = await neureus.rag.query('knowledge-base', {
  query: 'How do I deploy my application?'
});

Individual Clients

You can also import and use each client independently:

import { AIClient, VectorClient, RAGClient } from '@neureus/sdk';

const ai = new AIClient({ apiKey: process.env.NEUREUS_API_KEY });
const vector = new VectorClient({ apiKey: process.env.NEUREUS_API_KEY });
const rag = new RAGClient({ apiKey: process.env.NEUREUS_API_KEY });

AI Gateway

Chat Completions

import { AIClient } from '@neureus/sdk/ai';

const ai = new AIClient({
  apiKey: process.env.NEUREUS_API_KEY
});

// Non-streaming
const response = await ai.chat.create([
  { role: 'system', content: 'You are a helpful assistant.' },
  { role: 'user', content: 'Explain quantum computing simply.' }
], {
  model: 'gpt-4',
  temperature: 0.7,
  maxTokens: 500
});

console.log(response.choices[0].message.content);
console.log(`Tokens used: ${response.usage.totalTokens}`);
console.log(`Cost: $${response.cost?.total.toFixed(4)}`);

Streaming Completions

// Streaming
const stream = await ai.chat.stream([
  { role: 'user', content: 'Write a short story about AI.' }
], {
  model: 'gpt-4'
});

for await (const chunk of stream) {
  const content = chunk.choices[0]?.delta?.content;
  if (content) {
    process.stdout.write(content);
  }
}

Multi-Provider Support

// Automatic fallback across providers
const response = await ai.chat.create(messages, {
  model: 'gpt-4',
  fallback: ['claude-3-sonnet', 'gemini-pro']
});

// OpenAI, Anthropic, Google, Cloudflare, and AWS Bedrock supported

Caching & Cost Optimization

// Automatic caching for identical requests
const response = await ai.chat.create(messages, {
  cache: true  // Default: true
});

if (response.cached) {
  console.log(`Cache hit! Saved ${response.cost?.total.toFixed(4)} USD`);
}

Vector Database

Index Management

import { VectorClient } from '@neureus/sdk/vector';

const vectors = new VectorClient({
  apiKey: process.env.NEUREUS_API_KEY
});

// Create an index
await vectors.indices.create({
  name: 'product-docs',
  dimension: 1536,  // OpenAI ada-002
  metric: 'cosine',
  indexType: 'hnsw'
});

// List all indices
const { indices } = await vectors.indices.list();

Vector Operations

// Upsert vectors
await vectors.upsert({
  vectors: [
    {
      id: 'doc-1',
      vector: embedding,  // [0.1, 0.2, ..., 0.5]
      metadata: {
        title: 'Getting Started',
        section: 'installation',
        page: 1
      }
    }
  ],
  indexName: 'product-docs'
});

// Get a vector by ID
const vector = await vectors.get('doc-1');

Similarity Search

// Vector search
const results = await vectors.search({
  vector: queryEmbedding,
  topK: 10,
  minSimilarity: 0.7,
  filter: {
    section: 'installation'
  },
  includeMetadata: true
});

for (const result of results.matches) {
  console.log(`${result.id}: ${result.score} - ${result.metadata.title}`);
}

Hybrid Search

// Combine vector and keyword search
const results = await vectors.hybridSearch({
  vector: queryEmbedding,
  query: 'installation guide',
  topK: 10,
  alpha: 0.7  // 70% vector, 30% keyword
});

RAG Pipeline

Create a Pipeline

import { RAGClient } from '@neureus/sdk/rag';

const rag = new RAGClient({
  apiKey: process.env.NEUREUS_API_KEY
});

// Create a RAG pipeline
await rag.pipelines.create({
  name: 'customer-support',
  description: 'Customer support knowledge base',
  embedding: {
    model: 'text-embedding-ada-002',
    provider: 'openai',
    dimensions: 1536
  },
  chunking: {
    strategy: 'recursive',
    size: 512,
    overlap: 128
  },
  generation: {
    model: 'gpt-4',
    provider: 'openai',
    temperature: 0.1,
    maxTokens: 1000
  }
});

Ingest Documents

// From files
await rag.ingest('customer-support', {
  source: './docs',
  type: 'file',
  format: 'markdown',
  recursive: true
});

// From URL
await rag.ingest('customer-support', {
  source: 'https://example.com/docs',
  type: 'url',
  format: 'html'
});

// From text
await rag.ingest('customer-support', {
  source: 'This is my document content...',
  type: 'text',
  metadata: { title: 'Product Guide' }
});

Query with RAG

// Non-streaming query
const response = await rag.query('customer-support', {
  query: 'How do I reset my password?',
  topK: 5,
  minSimilarity: 0.7,
  includeSource: true
});

console.log('Answer:', response.answer);
console.log('Sources:', response.sources);
console.log('Performance:', response.performance);

Streaming RAG Responses

// Streaming query
const stream = await rag.queryStream('customer-support', {
  query: 'Explain the authentication flow'
});

for await (const chunk of stream) {
  if (chunk.type === 'context') {
    console.log('Retrieved contexts:', chunk.data);
  } else if (chunk.type === 'answer') {
    process.stdout.write(chunk.data.content);
  } else if (chunk.type === 'complete') {
    console.log('\nSources:', chunk.data.sources);
  }
}

Configuration

Client Options

const neureus = new NeureusClient({
  apiKey: 'nru_...',
  baseUrl: 'https://api.neureus.ai',  // Optional, default shown
  timeout: 60000,  // ms, default: 60000
  retries: 3,      // default: 3
  userId: 'user-123',  // Optional, for usage tracking
  teamId: 'team-456',  // Optional, for usage tracking
  defaultVectorIndex: 'default',  // Optional
  defaultVectorNamespace: ''      // Optional
});

Error Handling

import {
  AIGatewayError,
  RateLimitError,
  VectorDBError,
  RAGError
} from '@neureus/sdk';

try {
  const response = await ai.chat.create(messages);
} catch (error) {
  if (error instanceof RateLimitError) {
    console.error('Rate limited, retry after:', error.metadata.retryAfter);
  } else if (error instanceof AIGatewayError) {
    console.error('AI Gateway error:', error.code, error.message);
  } else {
    console.error('Unexpected error:', error);
  }
}

TypeScript Support

The SDK is written in TypeScript and includes full type definitions:

import type {
  ChatMessage,
  ChatCompletionResponse,
  VectorEntry,
  VectorSearchResponse,
  QueryResponse,
  RAGConfig
} from '@neureus/sdk';

Advanced Usage

Custom HTTP Client

// The SDK uses `ky` internally for HTTP requests
// All clients accept standard ky configuration options

Batch Operations

// Batch vector upserts
await vectors.upsert({
  vectors: [...Array(1000)].map((_, i) => ({
    id: `doc-${i}`,
    vector: generateEmbedding(),
    metadata: { index: i }
  }))
});

Concurrent Requests

// Parallel AI requests
const [response1, response2, response3] = await Promise.all([
  ai.chat.create(messages1),
  ai.chat.create(messages2),
  ai.chat.create(messages3)
]);

Examples

Check out the /examples directory for complete working examples:

  • Chat application with streaming
  • Document Q&A with RAG
  • Semantic search
  • Multi-provider fallback
  • Cost optimization strategies

API Reference

Full API documentation available at: https://docs.neureus.ai/sdk

Support

  • Documentation: https://docs.neureus.ai
  • GitHub Issues: https://github.com/Neureus/Neureus/issues
  • Discord Community: https://discord.gg/neureus
  • Email: [email protected]

License

MIT © Neureus


Note: Requires an API key from https://app.neureus.ai