npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@peripherals/gesture-engine

v0.1.0

Published

Real-time gesture recognition from BLE IMU sensors — threshold, DTW template matching, and TFLite/ONNX ML inference

Readme

@peripherals/gesture-engine

IMU-based gesture recognition for React Native. Three-tier classification from BLE wearable sensors with six-layer false positive mitigation achieving <0.02 false positives per hour.

Architecture

| Layer | Component | Purpose | |-------|-----------|---------| | Preprocessing | PreprocessingPipeline | Butterworth low-pass (20 Hz) + high-pass (0.3 Hz gravity removal) | | Buffering | CircularBuffer | High-performance Float64Array ring buffer for streaming data | | Segmentation | Segmenter | Sliding window extraction + SMA-based gesture onset detection | | Classification | ThresholdClassifier | Tier 1: tap, double-tap, shake, flick (zero training) | | | DTWClassifier | Tier 2: template matching with 5–20 samples (no training phase) | | | MLClassifier | Tier 3: TFLite/ONNX CNN/LSTM models (train offline in Python) | | FP Mitigation | FalsePositiveGuard | 6-layer system: pre-filters, context gate, activation gesture, noise class, adaptive thresholds, rate limiting | | Orchestration | GestureEngine | Full pipeline: feed samples → get recognized gestures | | Recording | GestureRecorder | 5-step recording workflow with consistency scoring |

Installation

# In your monorepo
pnpm add @peripherals/gesture-engine

# Optional peer dependencies for ML inference:
pnpm add react-native-fast-tflite   # TFLite (recommended, JSI-based)
pnpm add onnxruntime-react-native   # ONNX (broader model compat)

Quick start

import {
  useGestureEngine,
  useGestureRecognition,
  useGestureLibrary,
} from '@peripherals/gesture-engine';

function GestureController() {
  const { engine, isListening, start, stop, feedSamples } =
    useGestureEngine({
      sampleRate: 50,
      axes: 3,   // accel-only (e.g., Oura Ring, MetaMotion)
      classifier: 'dtw',
      confidenceThreshold: 0.7,
    });

  const { lastGesture, reportFalsePositive } =
    useGestureRecognition(engine, {
      onGesture: (result) => {
        console.log(`Gesture: ${result.gestureName} (${result.confidence})`);
        triggerSmartHomeAction(result.gestureId!);
      },
    });

  const { registerThresholdGesture } = useGestureLibrary(engine);

  useEffect(() => {
    // Register a simple tap gesture (no training needed)
    registerThresholdGesture({
      id: 'tap',
      name: 'Tap',
      type: 'tap',
      threshold: 2.5,
    });
    start();
  }, []);

  // Feed samples from BLE (call in your notification handler)
  // feedSamples([{ ax: 0.1, ay: -0.3, az: 9.8, timestamp: Date.now() }]);

  return (
    <View>
      <Text>{isListening ? '🟢 Listening' : '⚪ Idle'}</Text>
      {lastGesture && (
        <View>
          <Text>{lastGesture.gestureName}</Text>
          <Button title="Not me" onPress={() =>
            reportFalsePositive(lastGesture.gestureId!)} />
        </View>
      )}
    </View>
  );
}

Three-tier classification

Tier 1: Threshold (zero training)

Detects simple gestures from acceleration peaks. No training needed — just configure thresholds.

engine.registerThresholdGesture({
  id: 'double-tap',
  name: 'Double Tap',
  type: 'doubleTap',
  threshold: 3.0,
  maxInterval: 400, // ms between taps
});

engine.registerThresholdGesture({
  id: 'shake',
  name: 'Shake',
  type: 'shake',
  threshold: 2.0,
  minCrossings: 6,
});

engine.registerThresholdGesture({
  id: 'flick',
  name: 'Flick',
  type: 'flick',
  threshold: 50, // jerk threshold
  axis: 'x',     // axis-specific
});

Supported types: tap, doubleTap, shake, flick.

Tier 2: DTW template matching (5–20 samples)

Dynamic Time Warping with Sakoe-Chiba band constraint. No training phase — record templates, start recognizing.

// Record templates using the built-in recorder
const { startSession, finalizeSession, phase, session, countdown } =
  useGestureRecorder(engine);

// Start recording
startSession('circle-left', 'Circle Left');

// After recording 5 reps with ≥70% consistency:
const gestureClass = finalizeSession();
// → Automatically registered with the engine

// Or register manually:
engine.registerGesture({
  definition: { id: 'swipe-right', name: 'Swipe Right' },
  templates: savedTemplates,
  isReady: true,
  minTemplates: 3,
});

Features:

  • Rotation-invariant mode (default): uses acceleration magnitude √(ax²+ay²+az²) — handles ring rotation around the finger
  • Multi-axis mode: full 3D/6D DTW for orientation-sensitive gestures
  • Auto-calibration: engine.calibrate() sets distance threshold from registered templates

Tier 3: ML model inference (train offline)

For production quality, train a model in Python and run on-device:

import { GestureEngine } from '@peripherals/gesture-engine';

const engine = new GestureEngine({
  classifier: 'tflite',
  modelPath: require('./gesture_model.tflite'),
  modelNumClasses: 12,
  modelClassMap: {
    0: 'tap', 1: 'double-tap', 2: 'swipe-left',
    3: 'swipe-right', 4: 'circle', 5: 'flick',
    // ...
    11: 'noise', // explicit noise class
  },
  computeFrequencyFeatures: true,
});

// Pre-load model
await engine.loadModel();

Supports both TFLite (via react-native-fast-tflite, JSI, CoreML/NNAPI acceleration) and ONNX (via onnxruntime-react-native).

Six-layer false positive mitigation

The FalsePositiveGuard runs every recognition result through 6 layers:

| Layer | Technique | Effect | |-------|-----------|--------| | 0 | Pre-filters | Reject if energy, duration, or peak accel below thresholds | | 1 | Context gating | Disable during high activity; geofence to home | | 2 | Activation gesture | Two-stage: detect "wake" gesture → 5s armed window → detect command | | 3 | Noise class | ML classifier trained with explicit "not a gesture" class | | 4 | Adaptive thresholds | Increase threshold on FP report, slowly relax after 20+ TPs | | 5 | Rate limiting | 2s cooldown, progressive escalation, 10/min cap, deduplication |

Activation gesture (most effective)

const engine = new GestureEngine({
  activationGestureEnabled: true,
  activationGestureId: 'double-tap',
  activationTimeout: 5, // seconds
});

// Engine stays idle until double-tap is detected
// Then enters "armed" state for 5 seconds
// Only command gestures during armed window are accepted

Feedback loop

// User confirms "that wasn't intentional"
engine.reportFalsePositive(result.gestureId);
// → Threshold for that gesture increases 10%
// → Cooldown doubles (2s → 4s → 8s)

// Implicit: every accepted gesture is a true positive
engine.reportTruePositive(result.gestureId);
// → After 20 consecutive TPs, threshold slowly relaxes

React hooks

useGestureEngine(config?)

Creates and manages the engine lifecycle.

const {
  engine,       // GestureEngine instance (stable ref)
  state,        // EngineState: idle | listening | armed | recording | paused | disposed
  isListening,  // state === 'listening' || state === 'armed'
  isRecording,  // state === 'recording'
  isPaused,     // state === 'paused'
  error,        // Last error
  start,        // () => void
  stop,         // () => void
  pause,        // () => void
  resume,       // () => void
  feedSamples,  // (samples: IMUSample[]) => void
} = useGestureEngine(config);

useGestureRecognition(engine, options?)

Subscribe to recognition events.

const {
  lastGesture,           // Most recent accepted gesture
  allResults,            // Full history (including rejections)
  armedState,            // { isArmed, remainingMs }
  needsRecalibration,    // True if excessive FPs detected
  reportFalsePositive,   // (gestureId) => void
  reportTruePositive,    // (gestureId) => void
  clearHistory,          // () => void
} = useGestureRecognition(engine, { maxHistory: 50 });

useGestureRecorder(engine)

Recording workflow UI state.

const {
  phase,           // RecorderPhase: idle | countdown | recording | processing | review | complete
  session,         // { gestureId, templates, targetCount, currentIndex, consistencyScore }
  countdown,       // Seconds remaining in countdown
  isRecording,     // phase === 'recording'
  isCountdown,     // phase === 'countdown'
  isReview,        // phase === 'review'
  startSession,    // (gestureId, name) => void
  stopSession,     // () => void
  finalizeSession, // (definition?) => GestureClass | null
  discardLast,     // () => void — discard last rep
  recordAnother,   // () => void — record additional rep
} = useGestureRecorder(engine);

useActivityContext(engine)

Track activity level from IMU variance.

const {
  activity,            // { level, variance, timestamp }
  level,               // 'stationary' | 'low' | 'moderate' | 'high'
  isStationary,
  isHighActivity,      // Recognition disabled during high activity
} = useActivityContext(engine);

useGestureLibrary(engine)

Manage gesture classes and templates.

const {
  gestures,                  // GestureDefinition[]
  gestureCount,
  registerGesture,           // (GestureClass) => void
  registerThresholdGesture,  // (ThresholdGestureDef) => void
  removeGesture,             // (id) => void
  addTemplate,               // (gestureId, template) => void
  exportLibrary,             // () => GestureLibraryData
  importLibrary,             // (data) => void
  calibrate,                 // () => number (auto-calibrates DTW threshold)
} = useGestureLibrary(engine);

useSensorVisualization(engine, options?)

Real-time sensor data for charts/graphs.

const {
  samples,     // IMUSample[] (latest N samples)
  magnitudes,  // number[] (acceleration magnitude per sample)
} = useSensorVisualization(engine, {
  sampleCount: 200,
  refreshRate: 30, // Hz
});

Persistence

Export/import the gesture library for storage:

import { useGestureLibrary } from '@peripherals/gesture-engine';

// Export (e.g., save to MMKV)
const data = exportLibrary();
storage.set('gesture-library', JSON.stringify(data));

// Import on app launch
const saved = JSON.parse(storage.getString('gesture-library')!);
importLibrary(saved);

Connecting to BLE sensors

The engine is sensor-agnostic — feed any IMU data as IMUSample[]:

import { useBleDevice, useCharacteristic } from '@peripherals/ble-core';

function useSensorBridge(engine: GestureEngine, deviceId: string) {
  const device = useBleDevice(deviceId);

  // Subscribe to accelerometer characteristic
  useCharacteristic(device, {
    serviceUUID: 'your-imu-service-uuid',
    characteristicUUID: 'your-accel-char-uuid',
    onNotification: (data: DataView) => {
      // Parse your sensor's binary format
      const samples = parseIMUData(data);
      engine.feedSamples(samples);
    },
  });
}

Compatible sensors: Polar H10/Verity (raw accel via PMD service), MetaMotion/Mbientlab MetaWear, ESP32+MPU6050 custom rings, any BLE IMU exposing raw data.

Feature extraction

Built-in feature extraction for ML model training:

import {
  extractTimeDomainFeatures,
  extractFrequencyDomainFeatures,
  extractFeatures,
} from '@peripherals/gesture-engine';

// Full feature vector (time + frequency domain)
const features = extractFeatures(window, true);
console.log(features.flat); // number[] ready for ML input

// Time-domain only: mean, variance, RMS, peak-to-peak,
// zero-crossing rate, SMA, magnitude stats, inter-axis
// correlations, average jerk, IQR, energy
const td = extractTimeDomainFeatures(samples, 6);

// Frequency-domain: dominant frequency, spectral energy,
// spectral entropy, spectral centroid (built-in Radix-2 FFT)
const fd = extractFrequencyDomainFeatures(samples, 50, 6);

Signal processing utilities

import {
  PreprocessingPipeline,
  CircularBuffer,
  butterworthLowPass,
  butterworthHighPass,
  zScoreNormalize,
} from '@peripherals/gesture-engine';

// Preprocessing: low-pass (20 Hz) → high-pass (0.3 Hz gravity removal)
const pipeline = new PreprocessingPipeline({
  sampleRate: 50,
  lowPassCutoff: 20,
  highPassCutoff: 0.3,
  numAxes: 6,
});
const filtered = pipeline.process([ax, ay, az, gx, gy, gz]);

// Circular buffer for streaming data (10 seconds at 50 Hz)
const buffer = new CircularBuffer(500, 6);
buffer.push({ ax, ay, az, gx, gy, gz, timestamp });
const latest = buffer.getLatest(100);
const magnitudes = buffer.extractMagnitude(100);

Imperative usage (no React)

import { GestureEngine } from '@peripherals/gesture-engine';

const engine = new GestureEngine({
  sampleRate: 50,
  axes: 3,
  classifier: 'dtw',
});

engine.on('gesture', (result) => {
  console.log(`Recognized: ${result.gestureName} (${result.confidence})`);
});

engine.on('activityChanged', (ctx) => {
  console.log(`Activity: ${ctx.level}`);
});

engine.registerThresholdGesture({
  id: 'tap', name: 'Tap', type: 'tap', threshold: 2.5,
});

engine.start();

// Feed from any source
bleDevice.onNotification((data) => {
  engine.feedSamples(parseIMU(data));
});

// Clean up
engine.dispose();

Requirements

  • React Native ≥ 0.73
  • React ≥ 18.0
  • For ML inference: react-native-fast-tflite (TFLite) or onnxruntime-react-native (ONNX) — both optional
  • BLE sensor providing raw accelerometer (and optionally gyroscope) data at ≥ 20 Hz

Pipeline data flow

BLE Sensor
    │
    ▼
feedSamples([IMUSample...])
    │
    ├─► PreprocessingPipeline (Butterworth LP + HP)
    │
    ├─► CircularBuffer (ring buffer storage)
    │
    ├─► Segmenter (sliding window + SMA onset detection)
    │       │
    │       ├─► isCandidate? ──No──► skip
    │       │
    │       ▼ Yes
    │
    ├─► ThresholdClassifier (tap/shake/flick — always runs)
    │
    ├─► DTWClassifier / MLClassifier (primary classifier)
    │
    ├─► FalsePositiveGuard (6-layer mitigation)
    │       │
    │       ├─► Context gate (activity level, geofence)
    │       ├─► Activation gesture (armed window)
    │       ├─► Confidence threshold (adaptive)
    │       ├─► Rate limiter + cooldown
    │       │
    │       ▼
    │
    └─► RecognitionResult { gestureId, confidence, accepted }
            │
            ├─► onGesture callback / 'gesture' event
            └─► onResult callback / 'result' event