npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@polargrid/polargrid-sdk

v0.3.0

Published

JavaScript/TypeScript SDK for PolarGrid Edge AI Infrastructure with Full API Support

Readme

PolarGrid SDK

The official JavaScript/TypeScript SDK for PolarGrid Edge AI Infrastructure with full API support and mock data capabilities.

Features

  • Text Inference: Completions and chat completions (streaming support)
  • Voice: Text-to-speech and speech-to-text
  • Model Management: Load, unload, and check model status
  • GPU Management: Monitor and manage GPU resources
  • Mock Data Mode: Develop without backend (perfect for frontend work)
  • Full TypeScript Support: Complete type definitions
  • Error Handling: Comprehensive error types
  • Retry Logic: Automatic retry with exponential backoff

Installation

npm install @polargrid/polargrid-sdk

Quick Start

With Mock Data (Development)

Perfect for frontend development before backend is ready:

import { PolarGrid } from '@polargrid/polargrid-sdk';

const client = new PolarGrid({
  useMockData: true,  // Enable mock mode
  debug: true,        // See what's happening
});

// All methods work with realistic mock data
const response = await client.chatCompletion({
  model: 'llama-3.1-8b',
  messages: [
    { role: 'user', content: 'Hello!' }
  ]
});

console.log(response.choices[0].message.content);

With Real API (Production)

import { PolarGrid } from '@polargrid/polargrid-sdk';

const client = new PolarGrid({
  apiKey: 'pg_your_api_key',
  useMockData: false,  // Use real API
});

API Reference

Text Inference

Chat Completions

// Non-streaming
const response = await client.chatCompletion({
  model: 'llama-3.1-8b',
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'What is quantum computing?' }
  ],
  maxTokens: 150,
  temperature: 0.7,
});

console.log(response.choices[0].message.content);
// Streaming
for await (const chunk of client.chatCompletionStream({
  model: 'llama-3.1-8b',
  messages: [{ role: 'user', content: 'Tell me a story' }],
})) {
  if (chunk.choices[0].delta.content) {
    process.stdout.write(chunk.choices[0].delta.content);
  }
}

Text Completions

const response = await client.completion({
  prompt: 'Once upon a time',
  model: 'llama-3.1-8b',
  maxTokens: 100,
  temperature: 0.8,
});

console.log(response.choices[0].text);

Voice / Audio

Text-to-Speech

// Generate audio
const audioBuffer = await client.textToSpeech({
  model: 'tts-1',
  input: 'Hello from PolarGrid!',
  voice: 'alloy',
  responseFormat: 'mp3',
  speed: 1.0,
});

// Save to file (Node.js)
import { writeFile } from 'fs/promises';
await writeFile('speech.mp3', Buffer.from(audioBuffer));
// Streaming TTS
for await (const chunk of client.textToSpeechStream({
  model: 'tts-1',
  input: 'Long text to convert...',
  voice: 'nova',
})) {
  // Process audio chunks as they arrive
  audioStream.write(chunk);
}

Speech-to-Text

// Transcribe audio
const file = new File([audioData], 'recording.mp3', { type: 'audio/mpeg' });

const transcription = await client.transcribe({
  file,
  model: 'whisper-1',
  language: 'en',
  responseFormat: 'json',
});

console.log(transcription.text);
// Verbose transcription with timestamps
const verbose = await client.transcribe({
  file,
  model: 'whisper-1',
  responseFormat: 'verbose_json',
}) as VerboseTranscriptionResponse;

verbose.segments.forEach(segment => {
  console.log(`[${segment.start}s - ${segment.end}s]: ${segment.text}`);
});
// Translate to English
const translation = await client.translate({
  file: spanishAudioFile,
  model: 'whisper-1',
  responseFormat: 'json',
});

console.log(translation.text);

Model Management

// List available models
const { data: models } = await client.listModels();
models.forEach(model => {
  console.log(`${model.id} (${model.ownedBy})`);
});
// Load a model
const result = await client.loadModel({
  modelName: 'llama-3.1-70b',
  forceReload: false,
});

console.log(result.message);
// Check model status
const status = await client.getModelStatus();
console.log('Loaded models:', status.loaded);
console.log('Loading status:', status.loadingStatus);
// Unload a model
await client.unloadModel({ modelName: 'gpt2' });

// Unload all models
const result = await client.unloadAllModels();
console.log(`Unloaded ${result.totalUnloaded} models`);

GPU Management

// Get detailed GPU status
const gpuStatus = await client.getGPUStatus();
gpuStatus.gpus.forEach(gpu => {
  console.log(`GPU ${gpu.index}: ${gpu.name}`);
  console.log(`  Memory: ${gpu.memory.usedGb}GB / ${gpu.memory.totalGb}GB`);
  console.log(`  Utilization: ${gpu.utilization.gpuPercent}%`);
  console.log(`  Temperature: ${gpu.temperatureC}°C`);
});
// Get simplified memory info
const memory = await client.getGPUMemory();
console.log(`Memory used: ${memory.memory[0].usedGb}GB (${memory.memory[0].percentUsed}%)`);
// Purge GPU memory
const purgeResult = await client.purgeGPU({ force: false });
console.log(`Freed ${purgeResult.memoryFreedGb}GB`);
console.log(`Unloaded models:`, purgeResult.modelsUnloaded);
console.log(purgeResult.recommendation);

Health Check

const health = await client.health();
console.log(`Status: ${health.status}`);
console.log(`Backend healthy: ${health.backend.healthy}`);
console.log(`Models loaded: ${health.backend.info.modelsLoaded}`);

Error Handling

import {
  PolarGrid,
  isPolarGridError,
  AuthenticationError,
  ValidationError,
  RateLimitError,
  ServerError,
  NetworkError,
} from '@polargrid/polargrid-sdk';

try {
  const response = await client.chatCompletion({
    model: 'llama-3.1-8b',
    messages: [{ role: 'user', content: 'Hello' }],
  });
} catch (error) {
  if (isPolarGridError(error)) {
    console.error(`PolarGrid Error: ${error.message}`);
    console.error(`Request ID: ${error.requestId}`);

    if (error instanceof AuthenticationError) {
      // Handle auth errors
    } else if (error instanceof ValidationError) {
      // Handle validation errors
      console.error('Details:', error.details);
    } else if (error instanceof RateLimitError) {
      // Handle rate limits
      console.error(`Retry after: ${error.retryAfter}s`);
    }
  }
}

Configuration Options

const client = new PolarGrid({
  // API key (required for production, optional for mock mode)
  apiKey: 'pg_your_api_key',

  // Base URL (default: https://api.polargrid.ai)
  baseUrl: 'https://api.polargrid.ai',

  // JWT token exchange URL (default: /api/auth/inference-token)
  authUrl: '/api/auth/inference-token',

  // Request timeout in milliseconds (default: 30000)
  timeout: 30000,

  // Maximum retry attempts (default: 3)
  maxRetries: 3,

  // Enable debug logging (default: false)
  debug: true,

  // Use mock data instead of real API (default: false)
  useMockData: true,
});

Mock Data for Development

The SDK includes comprehensive mock data that matches the API spec exactly:

Why Use Mock Data?

  1. Frontend Development: Build UI components before backend is ready
  2. Testing: Predictable responses for unit tests
  3. Demos: Show realistic flows without production infrastructure
  4. Development: Faster iteration without API calls

What's Mocked?

  • ✅ All text inference endpoints with realistic responses
  • ✅ Voice TTS and STT with proper audio formats
  • ✅ Model management with state simulation
  • ✅ GPU metrics with realistic utilization data
  • ✅ Streaming responses (both text and audio)
  • ✅ Error scenarios (configurable)

Mock Data Examples

// Mock mode returns realistic data instantly
const client = new PolarGrid({ useMockData: true });

// Chat completions understand context
const response = await client.chatCompletion({
  model: 'llama-3.1-8b',
  messages: [
    { role: 'user', content: 'What is the capital of France?' }
  ]
});
// Returns: "The capital of France is Paris..."

// Streaming works chunk by chunk
for await (const chunk of client.chatCompletionStream({
  model: 'llama-3.1-8b',
  messages: [{ role: 'user', content: 'Hello' }]
})) {
  // Each chunk arrives with realistic timing
}

// GPU status returns current metrics
const gpu = await client.getGPUStatus();
console.log(gpu.gpus[0].memory.usedGb); // e.g., 45.2 GB

Environment Variables

# API Key
POLARGRID_API_KEY=pg_your_api_key

# Base URL (optional)
NEXT_PUBLIC_INFERENCE_URL=https://api.polargrid.ai

TypeScript Support

Full TypeScript support with comprehensive type definitions:

import type {
  ChatCompletionRequest,
  ChatCompletionResponse,
  ModelInfo,
  GPUStatusResponse,
} from '@polargrid/polargrid-sdk';

Best Practices

1. Use Mock Data During Development

const isDevelopment = process.env.NODE_ENV === 'development';

const client = new PolarGrid({
  apiKey: process.env.POLARGRID_API_KEY,
  useMockData: isDevelopment,
  debug: isDevelopment,
});

2. Handle Errors Gracefully

try {
  const response = await client.chatCompletion(request);
  return response;
} catch (error) {
  if (error instanceof RateLimitError) {
    // Wait and retry
    await sleep(error.retryAfter * 1000);
    return client.chatCompletion(request);
  }
  throw error;
}

3. Use Streaming for Long Responses

// Better user experience for long-form content
for await (const chunk of client.chatCompletionStream(request)) {
  updateUI(chunk.choices[0].delta.content);
}

Examples

See the /examples directory for complete working examples:

  • examples/basic-chat.ts - Simple chat completion
  • examples/streaming.ts - Streaming responses
  • examples/voice.ts - TTS and STT examples
  • examples/model-management.ts - Loading and managing models
  • examples/gpu-monitoring.ts - GPU metrics dashboard

Development

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test

# Run tests in watch mode
npm run test:watch

# Type checking
npm run typecheck

License

MIT

Support

  • Documentation: https://docs.polargrid.ai
  • Issues: https://github.com/your-org/polargrid-sdk/issues
  • Email: [email protected]
  • Made with ❄️ by the PolarGrid team.