npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2026 – Pkg Stats / Ryan Hefner

@promptbook/color

v0.105.0-4

Published

Promptbook: Turn your company's scattered knowledge into AI ready books

Readme

✨ Promptbook: AI Agents

Turn your company's scattered knowledge into AI ready Books

NPM Version of Promptbook logo Promptbook Quality of package Promptbook logo Promptbook Known Vulnerabilities 🧪 Test Books 🧪 Test build 🧪 Lint 🧪 Spell check 🧪 Test types Issues

🌟 New Features

  • Gemini 3 Support

📦 Package @promptbook/color

To install this package, run:

# Install entire promptbook ecosystem
npm i ptbk

# Install just this package to save space
npm install @promptbook/color

🎨 Core Features

Color Creation and Parsing

Create colors from various formats including hex, RGB, HSL, and CSS color names:

import { Color } from '@promptbook/color';

// From hex values
const blue = Color.fromHex('#009edd');
const shortHex = Color.fromHex('#09d');

// From RGB values
const red = Color.fromValues(255, 0, 0);
const transparentRed = Color.fromValues(255, 0, 0, 128); // 50% alpha

// From CSS color names
const navy = Color.get('midnightblue');

// From various string formats
const color1 = Color.fromString('#ff0000');
const color2 = Color.fromString('rgb(255, 0, 0)');
const color3 = Color.fromString('red');

Color Manipulation

Transform colors using various operators:

import { Color, darken, lighten, grayscale, negative } from '@promptbook/color';

const originalColor = Color.fromHex('#009edd');

// Darken and lighten colors
const darker = darken(originalColor, 0.2);
const lighter = lighten(originalColor, 0.3);

// Convert to grayscale
const gray = grayscale(originalColor);

// Create negative/inverted color
const inverted = negative(originalColor);

// Adjust alpha channel
const transparent = withAlpha(originalColor, 0.5);

Color Analysis

Analyze color properties and relationships:

import { colorDistance, colorLuminance, colorHue, colorSaturation, areColorsEqual } from '@promptbook/color';

const color1 = Color.fromHex('#ff0000');
const color2 = Color.fromHex('#00ff00');

// Calculate distance between colors
const distance = colorDistance(color1, color2);

// Get color properties
const luminance = colorLuminance(color1);
const hue = colorHue(color1);
const saturation = colorSaturation(color1);

// Compare colors
const areEqual = areColorsEqual(color1, color2);

Color Mixing and Blending

Mix colors and find optimal color combinations:

import { mixColors, mixWithColor, nearest, furthest, textColor } from '@promptbook/color';

const red = Color.fromHex('#ff0000');
const blue = Color.fromHex('#0000ff');

// Mix two colors
const purple = mixColors(red, blue, 0.5); // 50/50 mix

// Mix with a specific color
const tinted = mixWithColor(red, Color.fromHex('#ffffff'), 0.2); // Add 20% white

// Find nearest color from a palette
const palette = [Color.get('red'), Color.get('green'), Color.get('blue')];
const closest = nearest(Color.fromHex('#ff3333'), palette);

// Find furthest color for maximum contrast
const contrast = furthest(red, palette);

// Get optimal text color for readability
const textColorForBackground = textColor(Color.fromHex('#333333'));

Random Colors and Utilities

Generate random colors and work with color collections:

import { $randomColor, CSS_COLORS, colorToDataUrl } from '@promptbook/color';

// Generate random color
const randomColor = $randomColor();

// Access CSS color constants
const allCssColors = CSS_COLORS;
const specificColor = CSS_COLORS.midnightblue;

// Convert color to data URL (1x1 pixel image)
const dataUrl = colorToDataUrl(Color.fromHex('#ff0000'));

🔧 Color Class API

The Color class provides a comprehensive interface for working with individual colors:

import { Color } from '@promptbook/color';

const color = Color.fromHex('#009edd');

// Access color channels
console.log(color.red); // 0-255
console.log(color.green); // 0-255
console.log(color.blue); // 0-255
console.log(color.alpha); // 0-255

// Shorthand properties
console.log(color.r, color.g, color.b, color.a);

// Alpha-related properties
console.log(color.opacity); // Same as alpha
console.log(color.transparency); // 255 - alpha

// Convert to different formats
console.log(color.toHex()); // "#009edd"
console.log(color.toRgb()); // "rgb(0, 158, 221)"
console.log(color.toString()); // Same as toHex()

// Clone color
const cloned = color.clone();

🎯 Type Safety

All functions are fully typed with TypeScript, providing excellent IDE support and compile-time safety:

import type { ColorTransformer } from '@promptbook/color';

// ColorTransformer type for functions that transform colors
const myTransformer: ColorTransformer = (color: Color) => {
    return darken(color, 0.1);
};

🌈 CSS Color Support

The library includes comprehensive support for CSS color names:

import { CSS_COLORS, Color } from '@promptbook/color';

// All standard CSS colors are available
const colors = [
    Color.get('red'),
    Color.get('midnightblue'),
    Color.get('lightcoral'),
    Color.get('darkslategray'),
    // ... and many more
];

🔄 Fluent API with Take Chain

Many functions return colors wrapped in a "take chain" for fluent operations:

import { Color } from '@promptbook/color';

const result = Color.fromHex('#ff0000')
    .then((color) => darken(color, 0.2))
    .then((color) => withAlpha(color, 0.8))
    .then((color) => color.toHex());

💡 This package is designed to work seamlessly with other Promptbook packages and can be used independently for color manipulation tasks in any JavaScript/TypeScript project.


Rest of the documentation is common for entire promptbook ecosystem:

📖 The Book Whitepaper

Nowadays, the biggest challenge for most business applications isn't the raw capabilities of AI models. Large language models such as GPT-5.2 and Claude-4.5 are incredibly capable.

The main challenge lies in managing the context, providing rules and knowledge, and narrowing the personality.

In Promptbook, you can define your context using simple Books that are very explicit, easy to understand and write, reliable, and highly portable.

Paul Smith PERSONA You are a company lawyer. Your job is to provide legal advice and support to the company and its employees. RULE You are knowledgeable, professional, and detail-oriented. TEAM You are part of the legal team of Paul Smith & Associés, you discuss with {Emily White}, the head of the compliance department. {George Brown} is expert in corporate law and {Sophia Black} is expert in labor law.

Aspects of great AI agent

We have created a language called Book, which allows you to write AI agents in their native language and create your own AI persona. Book provides a guide to define all the traits and commitments.

You can look at it as "prompting" (or writing a system message), but decorated by commitments.

Commitments are special syntax elements that define contracts between you and the AI agent. They are transformed by Promptbook Engine into low-level parameters like which model to use, its temperature, system message, RAG index, MCP servers, and many other parameters. For some commitments (for example RULE commitment) Promptbook Engine can even create adversary agents and extra checks to enforce the rules.

Persona commitment

Personas define the character of your AI persona, its role, and how it should interact with users. It sets the tone and style of communication.

Paul Smith & Associés PERSONA You are a company lawyer.

Knowledge commitment

Knowledge Commitment allows you to provide specific information, facts, or context that the AI should be aware of when responding.

This can include domain-specific knowledge, company policies, or any other relevant information.

Promptbook Engine will automatically enforce this knowledge during interactions. When the knowledge is short enough, it will be included in the prompt. When it is too long, it will be stored in vector databases and RAG retrieved when needed. But you don't need to care about it.

Paul Smith & Associés PERSONA You are a company lawyer. Your job is to provide legal advice and support to the company and its employees. You are knowledgeable, professional, and detail-oriented. KNOWLEDGE https://company.com/company-policies.pdf KNOWLEDGE https://company.com/internal-documents/employee-handbook.docx

Rule commitment

Rules will enforce specific behaviors or constraints on the AI's responses. This can include ethical guidelines, communication styles, or any other rules you want the AI to follow.

Depending on rule strictness, Promptbook will either propagate it to the prompt or use other techniques, like adversary agent, to enforce it.

Paul Smith & Associés PERSONA You are a company lawyer. Your job is to provide legal advice and support to the company and its employees. You are knowledgeable, professional, and detail-oriented. RULE Always ensure compliance with laws and regulations. RULE Never provide legal advice outside your area of expertise. RULE Never provide legal advice about criminal law. KNOWLEDGE https://company.com/company-policies.pdf KNOWLEDGE https://company.com/internal-documents/employee-handbook.docx

Team commitment

Team commitment allows you to define the team structure and advisory fellow members the AI can consult with. This allows the AI to simulate collaboration and consultation with other experts, enhancing the quality of its responses.

Paul Smith & Associés PERSONA You are a company lawyer. Your job is to provide legal advice and support to the company and its employees. You are knowledgeable, professional, and detail-oriented. RULE Always ensure compliance with laws and regulations. RULE Never provide legal advice outside your area of expertise. RULE Never provide legal advice about criminal law. KNOWLEDGE https://company.com/company-policies.pdf KNOWLEDGE https://company.com/internal-documents/employee-handbook.docx TEAM You are part of the legal team of Paul Smith & Associés, you discuss with {Emily White}, the head of the compliance department. {George Brown} is expert in corporate law and {Sophia Black} is expert in labor law.

Promptbook Ecosystem

!!!@@@

Promptbook Server

!!!@@@

Promptbook Engine

!!!@@@

💜 The Promptbook Project

Promptbook project is ecosystem of multiple projects and tools, following is a list of most important pieces of the project:

🌐 Community & Social Media

Join our growing community of developers and users:

🖼️ Product & Brand Channels

Promptbook.studio

📚 Documentation

See detailed guides and API reference in the docs or online.

🔒 Security

For information on reporting security vulnerabilities, see our Security Policy.

📦 Packages (for developers)

This library is divided into several packages, all are published from single monorepo. You can install all of them at once:

npm i ptbk

Or you can install them separately:

⭐ Marked packages are worth to try first

📚 Dictionary

The following glossary is used to clarify certain concepts:

General LLM / AI terms

  • Prompt drift is a phenomenon where the AI model starts to generate outputs that are not aligned with the original prompt. This can happen due to the model's training data, the prompt's wording, or the model's architecture.
  • Pipeline, workflow scenario or chain is a sequence of tasks that are executed in a specific order. In the context of AI, a pipeline can refer to a sequence of AI models that are used to process data.
  • Fine-tuning is a process where a pre-trained AI model is further trained on a specific dataset to improve its performance on a specific task.
  • Zero-shot learning is a machine learning paradigm where a model is trained to perform a task without any labeled examples. Instead, the model is provided with a description of the task and is expected to generate the correct output.
  • Few-shot learning is a machine learning paradigm where a model is trained to perform a task with only a few labeled examples. This is in contrast to traditional machine learning, where models are trained on large datasets.
  • Meta-learning is a machine learning paradigm where a model is trained on a variety of tasks and is able to learn new tasks with minimal additional training. This is achieved by learning a set of meta-parameters that can be quickly adapted to new tasks.
  • Retrieval-augmented generation is a machine learning paradigm where a model generates text by retrieving relevant information from a large database of text. This approach combines the benefits of generative models and retrieval models.
  • Longtail refers to non-common or rare events, items, or entities that are not well-represented in the training data of machine learning models. Longtail items are often challenging for models to predict accurately.

Note: This section is not a complete dictionary, more list of general AI / LLM terms that has connection with Promptbook

💯 Core concepts

Advanced concepts

🚂 Promptbook Engine

Schema of Promptbook Engine

➕➖ When to use Promptbook?

➕ When to use

  • When you are writing app that generates complex things via LLM - like websites, articles, presentations, code, stories, songs,...
  • When you want to separate code from text prompts
  • When you want to describe complex prompt pipelines and don't want to do it in the code
  • When you want to orchestrate multiple prompts together
  • When you want to reuse parts of prompts in multiple places
  • When you want to version your prompts and test multiple versions
  • When you want to log the execution of prompts and backtrace the issues

See more

➖ When not to use

  • When you have already implemented single simple prompt and it works fine for your job
  • When OpenAI Assistant (GPTs) is enough for you
  • When you need streaming (this may be implemented in the future, see discussion).
  • When you need to use something other than JavaScript or TypeScript (other languages are on the way, see the discussion)
  • When your main focus is on something other than text - like images, audio, video, spreadsheets (other media types may be added in the future, see discussion)
  • When you need to use recursion (see the discussion)

See more

🐜 Known issues

🧼 Intentionally not implemented features

❔ FAQ

If you have a question start a discussion, open an issue or write me an email.

📅 Changelog

See CHANGELOG.md

📜 License

This project is licensed under BUSL 1.1.

🤝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

You can also ⭐ star the project, follow us on GitHub or various other social networks.We are open to pull requests, feedback, and suggestions.

🆘 Support & Community

Need help with Book language? We're here for you!

We welcome contributions and feedback to make Book language better for everyone!