npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@rbxts/fuzzy-search

v1.0.4

Published

Fuzzy search allows you to find the results even with the spelling mistaces or approximate search words

Readme

FuzzySearch

A comprehensive package providing fuzzy search algorithms and text processing utilities.

NPM

Namespaces

  • FuzzySearch.Scores: Core implementations of comparison algorithms (raw values)
  • FuzzySearch.Similarities: Normalized implementations (0-1 similarity scores)
  • FuzzySearch.Transform: Text preprocessing functions
  • FuzzySearch.Tokenization: String splitting utilities
  • FuzzySearch.Sorting: Ranking functions based on similarity metrics

Algorithms

CosineTextSimilarity

Calculates cosine similarity between tokenized strings. Ideal for document comparison.

Input:
"Hello World" vs "Hello Earth"
Tokenization:
["Hello", "World"] vs ["Hello", "Earth"]
Similarity: ~0.5 (shared term "Hello", different terms "World"/"Earth")

Declarations:

FuzzySearch.Scores.CosineTextSimilarity(tokenized_term: string[], tokenized_query: string[]): number;


/**higher - better */
FuzzySearch.Sorting.CosineTextSimilarity(output_terms: string[], tokenized_terms: string[][], tokenized_query: string[]): [number, string][]

//tokenization
const tokenized_term = FuzzySearch.Tokenization.Word(term);
//Hello Wor'ld-and_this is128 big!1.0;
//["hello", "wor", "ld", "and", "this", "is128", "big", "1", "0"]

Example:

// Comparing product descriptions
const desc1 = FuzzySearch.Tokenization.Word(
	"Wireless Bluetooth Headphones Noise-Canceling",
);
const desc2 = FuzzySearch.Tokenization.Word(
	"Bluetooth 5.0 Wireless Earbuds with ANC",
);
const similarity = FuzzySearch.Scores.CosineTextSimilarity(desc1, desc2); // ~0.34

Damerau-Levenshtein

Measures edit operations including transpositions. Great for OCR error correction.

Input:
"Thursday" vs "Thrusday"
Distance: 1 (single transposition r↔u)
Operations: Transpose 'r' and 'u'

Declarations:

// Basic implementation
FuzzySearch.Scores.DamerauLevenshteinDistance(term: string, query: string): number;
// Optimized for large strings
FuzzySearch.Scores.LargeStringsDamerauLevenshteinDistance(term: string, query: string): number;

// Similarity versions (0-1)
FuzzySearch.Similarities.DamerauLevenshteinDistance(term: string, query: string): number;
FuzzySearch.Similarities.LargeStringsDamerauLevenshteinDistance(term: string, query: string): number;


/**lower - better */
FuzzySearch.Sorting.DamerauLevenshteinDistance(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];
/**lower - better */
FuzzySearch.Sorting.LargeStringsDamerauLevenshteinDistance(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];
/**higher - better */
FuzzySearch.Sorting.DamerauLevenshteinDistanceSimilarity(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];
/**higher - better */
FuzzySearch.Sorting.LargeStringsDamerauLevenshteinDistanceSimilarity(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];

Example:

FuzzySearch.Scores.DamerauLevenshteinDistance("apple", "appel"); // 1 (transposition)
FuzzySearch.Similarities.DamerauLevenshteinDistance("clasp", "claps"); // 0.8 (1 edit)

Fuzzy Score

Default implementation for general-purpose fuzzy matching.

Input:
"fuzzywuzzy" vs "fuzzy"
Score: High (exact initial match + continuation)
Use Case: Partial match scoring in search boxes

Declarations:

FuzzySearch.Scores.FuzzyScore(term: string, query: string): number;


/**higher - better */
FuzzySearch.Sorting.FuzzyScore(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];

Example:

// Search box implementation
const results = FuzzySearch.Sorting.FuzzyScore(
	["Astrophysics", "Particle Physics", "Quantum Mechanics"],
	"Phys",
);

Hamming Distance

Compares same-length strings. Ideal for error-correcting codes.

Input:
"karolin" vs "kathrin" (equal length)
Distance: 3
Differences: Positions 3(r≠t), 4(o≠h), 6(i≠r)

Declarations:

FuzzySearch.Scores.HammingDistance(term: string, query: string): number;


FuzzySearch.Similarities.HammingDistance(term: string, query: string): number;
FuzzySearch.Similarities.HammingLevenshteinHybrid(term: string, query: string): number;


/**lower - better */
FuzzySearch.Sorting.HammingDistance(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];
/**higher - better */
FuzzySearch.Sorting.HammingDistanceSimilarity(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];
/**higher - better */
FuzzySearch.Sorting.HammingLevenshteinHybridSimilarity(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];

Example:

// DNA sequence comparison
FuzzySearch.Scores.HammingDistance("GATACA", "GATTACA"); // 4 mismatches
FuzzySearch.Scores.HammingDistance("AGCT", "AGTT"); // 1 mismatch

JaroWinkler

Optimized for name matching and short strings.

Input:
"Martha" vs "Marhta"
Similarity: 0.961 (vs 0.944 in plain Jaro)
Benefit: Prefix bonus for "Mar" match

Declarations:

FuzzySearch.Scores.JaroWinkler(term: string, query: string, case_sensitive: boolean = true): number;


/**higher - better */
FuzzySearch.Sorting.JaroWinkler(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];

Examples:

FuzzySearch.Scores.JaroWinkler("shackleford", "shackelford"); // 0.98
FuzzySearch.Scores.JaroWinkler("garbage", "gabrage"); // 0.96 (transposition handling)

Levenshtein Distance

Classic edit distance algorithm. Good for general typo detection.

Input:
"kitten" vs "sitting"
Operations: 3 edits
k→s (substitution), e→i (substitution), +g (insertion)

Declarations:

FuzzySearch.Scores.LevenshteinDistance(term: string, query: string): number;


FuzzySearch.Similarities.LevenshteinDistance(term: string, query: string): number;


/**lower - better */
FuzzySearch.Sorting.LevenshteinDistance(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];
/**higher - better */
FuzzySearch.Sorting.LevenshteinDistanceSimilarity(terms: string[], query: string, output_terms?: string[] = terms): [number, string][];

Examples:

FuzzySearch.Similarities.LevenshteinDistance("kitten", "sitting"); // 0.571 (3/7 edits)
FuzzySearch.Sorting.LevenshteinDistance(["color", "colour", "colr"], "colour");
// [ [0, "colour"], [1, "color"], [2, "colr"] ]

NGramCosine

Calculates cosine similarity using n-gram frequency vectors. Ideal for comparing documents by content structure.

Input:
"The quick" vs "Quick brown" (n=3)
Trigrams:
["The", "he ", "e q", " qu", ...] vs ["Qui", "uic", "ick", ...]
Similarity: Low - different n-gram sets

Declarations:

FuzzySearch.Scores.NGramCosine(n_gram_counts_tokenized_term: Map<string, number>, n_gram_counts_tokenized_query: Map<string, number>): number;

/**higher - better */
FuzzySearch.Sorting.NGramCosineSorting(output_terms: string[], n_gram_count_tokenized_terms: Map<string, number>[], n_gram_count_tokenized_query: Map<string, number>): [number, string][];


//tokenization
const n_gram_counts_tokenized_term = FuzzySearch.Tokenization.NGramCountsTokenization(term, n);
//Hello World!  n = 3
//["Hel", "ell", "llo", "lo ", "o W", " Wo", "Wor", "orl", "rld", "ld!"];

Examples:

const n = 2;
const term1 = FuzzySearch.Tokenization.NGramCounts("hello", n);
const term2 = FuzzySearch.Tokenization.NGramCounts("holla", n);
FuzzySearch.Scores.NGramCosine(term1, term2); // 0.25 (shared "ll")

NGramJaccard

Calculates similarity using n-gram set intersections. Effective for quick presence/absence comparisons.

Input:
"night" vs "nacht" (n=2)
Bigrams:
{"ni", "ig", "gh", "ht"} vs {"na", "ac", "ch", "ht"}
Similarity: 0.14 (1 shared "ht" / 7 total)

Declarations:

FuzzySearch.Scores.NGramJaccard(n_gram_set_tokenized_term: Set<string>, n_gram_set_tokenized_query: Set<string>): number;


/**higher - better */
FuzzySearch.Sorting.NGramJaccard(output_terms: string[], n_gram_set_tokenized_terms: Set<string>[], n_gram_set_tokenized_query: Set<string>): [number, string][] ;

//tokenization
const n_gram_counts_tokenized_term = FuzzySearch.Tokenization.NGramSetTokenization(term, n);
//Hello World!  n = 3
//["Hel", "ell", "llo", "lo ", "o W", " Wo", "Wor", "orl", "rld", "ld!"];

Examples:

const n = 3;
const set1 = FuzzySearch.Tokenization.NGramSet("Microsoft", n);
const set2 = FuzzySearch.Tokenization.NGramSet("Microsystems", n);
FuzzySearch.Scores.NGramJaccard(set1, set2); // 0.31 (shared "Mic", "cro", etc)

Tokenization

NGram

Declarations:

//Hello World!  n = 3
//["Hel", "ell", "llo", "lo ", "o W", " Wo", "Wor", "orl", "rld", "ld!"];
FuzzySearch.Tokenization.NGram(text: string, n: number): string[];

//used for NGramJaccard
FuzzySearch.Tokenization.NGramSet(str: string, n: number): Set<string>
//used for NGramCosine
FuzzySearch.Tokenization.NGramCounts(str: string, n: number): Map<string, number>;

Word

Tokenizes text into lowercase words, ignoring punctuation. Has various options

Declaration:

interface IWordTokenizationOptions {
	PreserveAccents?: boolean;
	PreserveHyphens?: boolean;
}
FuzzySearch.Tokenization.WordTo(text: string, options?: IWordTokenizationOptions): string[]

//Hello Wor'ld-and_this is128 big!1.0;
//["hello", "wor", "ld", "and", "this", "is128", "big", "1", "0"]

Transform

Soundex

Phonetic encoding for name matching:

Declarations:

FuzzySearch.Transform.SoundexTransform(input: string): string;
//Robert = Rupert -> R163
//Ashcraft = Ashcroft -> A261
//Howard = Hayward = Hardy -> H630