@robinson_ai_systems/free-agent-mcp
v0.15.0
Published
Free Agent MCP - Portable, workspace-agnostic code generation using FREE models (Ollama)
Downloads
7,351
Maintainers
Readme
🤖 Autonomous AI Agent MCP Server
Offload heavy AI work from Augment Code to FREE local LLMs!
Save 90%+ on Augment Code credits by delegating code generation, analysis, and refactoring to local LLMs running on your machine.
🎯 What It Does
The Autonomous AI Agent is an MCP server that runs local LLMs (via Ollama) to handle heavy AI tasks without using Augment Code credits.
Before (Without Autonomous Agent):
You: "Generate a notifications feature"
Augment: *generates code using 13,000 credits*
Cost: $2.00 in add-on packsAfter (With Autonomous Agent):
You: "Generate a notifications feature"
Augment: *calls delegate_code_generation*
Autonomous Agent: *generates code using local LLM*
Augment: *saves result using 500 credits*
Cost: $0.00 (runs locally!)
Savings: 96% credits + $2.00 cash💰 Credit Savings
| Task | Augment Credits | With Agent | Savings | |------|----------------|------------|---------| | Code Generation | 13,000 | 500 | 96% | | Code Analysis | 5,000 | 300 | 94% | | Refactoring | 7,000 | 400 | 94% | | Test Generation | 8,000 | 400 | 95% | | Documentation | 3,000 | 200 | 93% |
Average savings: 90%+ per task!
🚀 Quick Start
1. Install Ollama
# macOS/Linux
curl -fsSL https://ollama.com/install.sh | sh
# Windows
# Download from https://ollama.com/download2. Pull Models
# Best for complex code (slower, highest quality)
ollama pull deepseek-coder:33b
# Fastest (good for simple tasks)
ollama pull qwen2.5-coder:32b
# Balanced (good for most tasks)
ollama pull codellama:34b3. Install MCP Server
cd packages/autonomous-agent-mcp
npm install
npm run build4. Configure Augment Code
Add to your Augment Code MCP settings:
{
"mcpServers": {
"autonomous-agent": {
"command": "node",
"args": ["c:/Users/chris/Git Local/robinsonai-mcp-servers/packages/autonomous-agent-mcp/dist/index.js"]
}
}
}5. Start Using!
In Augment Code:
You: "Use the autonomous agent to generate a user profile component"
Augment: *calls delegate_code_generation*
Agent: *generates code using local LLM*
Augment: "Done! Here's your component. Used 500 credits instead of 13,000!"🛠️ Available Tools
1. delegate_code_generation
Generate code using local LLM (0 Augment credits!)
delegate_code_generation({
task: "notifications feature",
context: "Next.js, TypeScript, Supabase",
complexity: "medium"
})2. delegate_code_analysis
Analyze code for issues (0 Augment credits!)
delegate_code_analysis({
code: "...",
question: "find performance issues"
})3. delegate_code_refactoring
Refactor code (0 Augment credits!)
delegate_code_refactoring({
code: "...",
instructions: "extract into components"
})4. delegate_test_generation
Generate tests (0 Augment credits!)
delegate_test_generation({
code: "...",
framework: "jest",
coverage: "comprehensive"
})5. delegate_documentation
Generate documentation (0 Augment credits!)
delegate_documentation({
code: "...",
style: "tsdoc",
detail: "detailed"
})6. get_agent_stats
See how many credits you've saved!
get_agent_stats({
period: "month"
})🧠 Model Selection
The agent automatically selects the best model for each task:
| Complexity | Model | Speed | Quality | Use Case | |------------|-------|-------|---------|----------| | Simple | Qwen 2.5 Coder 32B | ⚡ Fast (10-20s) | ✅ Good | CRUD, boilerplate | | Medium | CodeLlama 34B | ⚡ Medium (20-40s) | ✅✅ Better | General tasks, tests | | Complex | DeepSeek Coder 33B | ⚡ Slow (30-60s) | ✅✅✅ Best | Algorithms, architecture |
You can also specify a model explicitly:
delegate_code_generation({
task: "...",
model: "deepseek-coder" // or "qwen-coder" or "codellama"
})📊 Real-World Example
Scenario: Building a notifications feature for Cortiware
Without Autonomous Agent:
- Augment generates code: 13,000 credits
- Augment generates tests: 8,000 credits
- Augment generates docs: 3,000 credits
- Total: 24,000 credits
- Cost: $3.60 in add-on packs
With Autonomous Agent:
- Augment plans: 500 credits
- Agent generates code: 0 credits (local!)
- Agent generates tests: 0 credits (local!)
- Agent generates docs: 0 credits (local!)
- Augment saves results: 500 credits
- Total: 1,000 credits
- Cost: $0.00
- Savings: 96% credits + $3.60 cash
🎯 Tips for Best Results
1. Be Specific
// ❌ Vague
delegate_code_generation({
task: "make a form",
context: "React"
})
// ✅ Specific
delegate_code_generation({
task: "user registration form with email, password, and name fields",
context: "Next.js 14, TypeScript, React Hook Form, Zod validation, Tailwind CSS"
})2. Use the Right Complexity
// Simple CRUD → use "simple" (fastest)
delegate_code_generation({
task: "basic user list component",
complexity: "simple"
})
// Complex algorithm → use "complex" (best quality)
delegate_code_generation({
task: "implement A* pathfinding algorithm",
complexity: "complex"
})3. Iterate
// First pass
const result1 = await delegate_code_generation({
task: "notifications feature",
context: "Next.js, TypeScript"
})
// Refine
const result2 = await delegate_code_refactoring({
code: result1.code,
instructions: "extract into smaller components"
})
// Add tests
const result3 = await delegate_test_generation({
code: result2.refactoredCode,
framework: "jest"
})🔧 Troubleshooting
"Model not found" error
# Pull the missing model
ollama pull deepseek-coder:33b
ollama pull qwen2.5-coder:32b
ollama pull codellama:34b"Ollama not running" error
# Start Ollama
ollama serveSlow generation
- Use
complexity: "simple"for faster results - Use
model: "qwen-coder"for fastest model - Reduce
maxTokensif generating too much code
Low quality results
- Use
complexity: "complex"for better quality - Use
model: "deepseek-coder"for best model - Provide more context in the request
- Be more specific in your task description
📈 Stats & Monitoring
Check your savings anytime:
const stats = await get_agent_stats({ period: "month" })
console.log(`Total requests: ${stats.totalRequests}`)
console.log(`Credits saved: ${stats.augmentCreditsSaved}`)
console.log(`Average time: ${stats.averageTimeMs}ms`)🚀 What's Next?
Once Ollama finishes installing, you can:
- Test the agent - Generate some code and see the savings!
- Build Cortiware faster - Use the agent for all heavy AI work
- Track your savings - Watch the credits saved add up
- Share your results - Help others save money too!
💡 Pro Tips
- Use for ALL code generation - Let the agent do the heavy lifting
- Combine with Credit Optimizer - Use templates + agent for maximum savings
- Run overnight - Let the agent generate code while you sleep
- Batch tasks - Generate multiple features at once
Ready to save 90%+ on Augment Code credits? 🚀
Cost: $0.00 (completely FREE!)
