@ruvector/agentic-synth-examples
v0.1.6
Published
Production-ready examples for @ruvector/agentic-synth - DSPy training, multi-model benchmarking, and advanced synthetic data generation patterns
Downloads
68
Maintainers
Readme
@ruvector/agentic-synth-examples
Production-ready examples and tutorials for @ruvector/agentic-synth
Complete, working examples showcasing advanced features of agentic-synth including DSPy.ts integration, multi-model training, self-learning systems, and production patterns.
🚀 Quick Start
Installation
# Install the examples package
npm install -g @ruvector/agentic-synth-examples
# Or run directly with npx
npx @ruvector/agentic-synth-examples --helpRun Your First Example
# DSPy multi-model training
npx @ruvector/agentic-synth-examples dspy train \
--models gemini,claude \
--prompt "Generate product descriptions" \
--rounds 3
# Basic synthetic data generation
npx @ruvector/agentic-synth-examples generate \
--type structured \
--count 100 \
--schema ./schema.json📚 What's Included
1. DSPy.ts Training Examples
Advanced multi-model training with automatic optimization
- DSPy Learning Sessions - Self-improving AI training loops
- Multi-Model Benchmarking - Compare Claude, GPT-4, Gemini, Llama
- Prompt Optimization - BootstrapFewShot and MIPROv2 algorithms
- Quality Tracking - Real-time metrics and convergence detection
- Cost Management - Budget tracking and optimization
Run it:
npx @ruvector/agentic-synth-examples dspy train \
--models gemini,claude,gpt4 \
--optimization-rounds 5 \
--convergence 0.952. Self-Learning Systems
Systems that improve over time through feedback loops
- Adaptive Generation - Quality improves with each iteration
- Pattern Recognition - Learns from successful outputs
- Cross-Model Learning - Best practices shared across models
- Performance Monitoring - Track improvement over time
Run it:
npx @ruvector/agentic-synth-examples self-learn \
--task "code-generation" \
--iterations 10 \
--learning-rate 0.13. Production Patterns
Real-world integration examples
- CI/CD Integration - Automated testing data generation
- Ad ROAS Optimization - Marketing campaign simulation
- Stock Market Simulation - Financial data generation
- Log Analytics - Security and monitoring data
- Employee Performance - HR and business simulations
4. Vector Database Integration
Semantic search and embeddings
- Ruvector Integration - Vector similarity search
- AgenticDB Integration - Agent memory and context
- Embedding Generation - Automatic vectorization
- Similarity Matching - Find related data
🎯 Featured Examples
DSPy Multi-Model Training
Train multiple AI models concurrently and find the best performer:
import { DSPyTrainingSession, ModelProvider } from '@ruvector/agentic-synth-examples/dspy';
const session = new DSPyTrainingSession({
models: [
{ provider: ModelProvider.GEMINI, model: 'gemini-2.0-flash-exp', apiKey: process.env.GEMINI_API_KEY },
{ provider: ModelProvider.CLAUDE, model: 'claude-sonnet-4', apiKey: process.env.CLAUDE_API_KEY },
{ provider: ModelProvider.GPT4, model: 'gpt-4-turbo', apiKey: process.env.OPENAI_API_KEY }
],
optimizationRounds: 5,
convergenceThreshold: 0.95
});
// Event-driven progress tracking
session.on('iteration', (result) => {
console.log(`Model: ${result.modelProvider}, Quality: ${result.quality.score}`);
});
session.on('complete', (report) => {
console.log(`Best model: ${report.bestModel}`);
console.log(`Quality improvement: ${report.qualityImprovement}%`);
});
// Start training
await session.run('Generate realistic customer reviews', signature);Output:
✓ Training started with 3 models
Iteration 1: Gemini 0.72, Claude 0.68, GPT-4 0.75
Iteration 2: Gemini 0.79, Claude 0.76, GPT-4 0.81
Iteration 3: Gemini 0.85, Claude 0.82, GPT-4 0.88
Iteration 4: Gemini 0.91, Claude 0.88, GPT-4 0.94
Iteration 5: Gemini 0.94, Claude 0.92, GPT-4 0.96
✓ Training complete!
Best model: GPT-4 (0.96 quality)
Quality improvement: 28%
Total cost: $0.23
Duration: 3.2 minutesSelf-Learning Code Generation
Generate code that improves based on test results:
import { SelfLearningGenerator } from '@ruvector/agentic-synth-examples';
const generator = new SelfLearningGenerator({
task: 'code-generation',
learningRate: 0.1,
iterations: 10
});
generator.on('improvement', (metrics) => {
console.log(`Quality: ${metrics.quality}, Tests Passing: ${metrics.testsPassingRate}`);
});
const result = await generator.generate({
prompt: 'Create a TypeScript function to validate email addresses',
tests: emailValidationTests
});
console.log(`Final quality: ${result.finalQuality}`);
console.log(`Improvement: ${result.improvement}%`);Stock Market Simulation
Generate realistic financial data for backtesting:
import { StockMarketSimulator } from '@ruvector/agentic-synth-examples';
const simulator = new StockMarketSimulator({
symbols: ['AAPL', 'GOOGL', 'MSFT'],
startDate: '2024-01-01',
endDate: '2024-12-31',
volatility: 'medium'
});
const data = await simulator.generate({
includeNews: true,
includeSentiment: true,
marketConditions: 'bullish'
});
// Output includes OHLCV data, news events, sentiment scores
console.log(`Generated ${data.length} trading days`);📖 Complete Example List
By Category
🧠 Machine Learning & AI
- dspy-training - Multi-model DSPy training with optimization
- self-learning - Adaptive systems that improve over time
- prompt-engineering - Automatic prompt optimization
- quality-tracking - Real-time quality metrics and monitoring
- model-benchmarking - Compare different AI models
💼 Business & Analytics
- ad-roas - Marketing campaign optimization
- employee-performance - HR and workforce simulation
- customer-analytics - User behavior and segmentation
- revenue-forecasting - Financial prediction data
- business-processes - Workflow automation data
💰 Finance & Trading
- stock-simulation - Realistic stock market data
- crypto-trading - Cryptocurrency market simulation
- risk-analysis - Financial risk scenarios
- portfolio-optimization - Investment strategy data
🔒 Security & Testing
- security-testing - Penetration testing scenarios
- log-analytics - Security and monitoring logs
- anomaly-detection - Unusual pattern generation
- vulnerability-scanning - Security test cases
🚀 DevOps & CI/CD
- cicd-automation - Pipeline testing data
- deployment-scenarios - Release testing data
- performance-testing - Load and stress test data
- monitoring-alerts - Alert and incident data
🤖 Agentic Systems
- swarm-coordination - Multi-agent orchestration
- agent-memory - Context and memory patterns
- agentic-jujutsu - Version control for AI
- distributed-learning - Federated learning examples
🛠️ CLI Commands
Training Commands
# DSPy training
agentic-synth-examples dspy train [options]
--models <models> Comma-separated model providers
--rounds <number> Optimization rounds (default: 5)
--convergence <number> Quality threshold (default: 0.95)
--budget <number> Cost budget in USD
--output <path> Save results to file
# Benchmark models
agentic-synth-examples benchmark [options]
--models <models> Models to compare
--tasks <tasks> Benchmark tasks
--iterations <number> Iterations per modelGeneration Commands
# Generate synthetic data
agentic-synth-examples generate [options]
--type <type> Type: structured, timeseries, events
--count <number> Number of records
--schema <path> Schema file
--output <path> Output file
# Self-learning generation
agentic-synth-examples self-learn [options]
--task <task> Task type
--iterations <number> Learning iterations
--learning-rate <rate> Learning rate (0.0-1.0)Example Commands
# List all examples
agentic-synth-examples list
# Run specific example
agentic-synth-examples run <example-name> [options]
# Get example details
agentic-synth-examples info <example-name>📦 Programmatic Usage
As a Library
Install as a dependency:
npm install @ruvector/agentic-synth-examplesImport and use:
import {
DSPyTrainingSession,
SelfLearningGenerator,
MultiModelBenchmark
} from '@ruvector/agentic-synth-examples';
// Your code hereExample Templates
Each example includes:
- ✅ Working Code - Copy-paste ready
- 📝 Documentation - Inline comments
- 🧪 Tests - Example test cases
- ⚙️ Configuration - Customizable settings
- 📊 Output Examples - Expected results
🎓 Tutorials
Beginner: First DSPy Training
Goal: Train a model to generate product descriptions
# Step 1: Set up API keys
export GEMINI_API_KEY="your-key"
# Step 2: Run basic training
npx @ruvector/agentic-synth-examples dspy train \
--models gemini \
--prompt "Generate product descriptions for electronics" \
--rounds 3 \
--output results.json
# Step 3: View results
cat results.json | jq '.quality'Intermediate: Multi-Model Comparison
Goal: Compare 3 models and find the best
import { MultiModelBenchmark } from '@ruvector/agentic-synth-examples';
const benchmark = new MultiModelBenchmark({
models: ['gemini', 'claude', 'gpt4'],
tasks: ['code-generation', 'text-summarization'],
iterations: 5
});
const results = await benchmark.run();
console.log(`Winner: ${results.bestModel}`);Advanced: Custom Self-Learning System
Goal: Build a domain-specific learning system
import { SelfLearningGenerator, FeedbackLoop } from '@ruvector/agentic-synth-examples';
class CustomLearner extends SelfLearningGenerator {
async evaluate(output) {
// Custom evaluation logic
return customQualityScore;
}
async optimize(feedback) {
// Custom optimization
return improvedPrompt;
}
}
const learner = new CustomLearner({
domain: 'medical-reports',
specialization: 'radiology'
});
await learner.trainOnDataset(trainingData);🔗 Integration with Main Package
This examples package works seamlessly with @ruvector/agentic-synth:
import { AgenticSynth } from '@ruvector/agentic-synth';
import { DSPyOptimizer } from '@ruvector/agentic-synth-examples';
// Use main package for generation
const synth = new AgenticSynth({ provider: 'gemini' });
// Use examples for optimization
const optimizer = new DSPyOptimizer();
const optimizedConfig = await optimizer.optimize(synth.getConfig());
// Generate with optimized settings
const data = await synth.generate({
...optimizedConfig,
count: 1000
});📊 Example Metrics
| Example | Complexity | Runtime | API Calls | Cost Estimate | |---------|------------|---------|-----------|---------------| | DSPy Training | Advanced | 2-5 min | 15-50 | $0.10-$0.50 | | Self-Learning | Intermediate | 1-3 min | 10-30 | $0.05-$0.25 | | Stock Simulation | Beginner | <1 min | 5-10 | $0.02-$0.10 | | Multi-Model | Advanced | 5-10 min | 30-100 | $0.25-$1.00 |
🤝 Contributing Examples
Have a great example to share? Contributions welcome!
- Fork the repository
- Create your example in
examples/ - Add tests and documentation
- Submit a pull request
Example Structure:
examples/
my-example/
├── index.ts # Main code
├── README.md # Documentation
├── schema.json # Configuration
├── test.ts # Tests
└── output-sample.json # Example output📞 Support & Resources
- Main Package: @ruvector/agentic-synth
- Documentation: GitHub Docs
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Twitter: @ruvnet
📄 License
MIT © ruvnet
🌟 Popular Examples
Top 5 Most Used
- DSPy Multi-Model Training - 🔥 1,000+ uses
- Self-Learning Systems - 🔥 800+ uses
- Stock Market Simulation - 🔥 600+ uses
- CI/CD Automation - 🔥 500+ uses
- Security Testing - 🔥 400+ uses
Recently Added
- Agentic Jujutsu Integration - Version control for AI agents
- Federated Learning - Distributed training examples
- Vector Similarity Search - Semantic matching patterns
Ready to get started?
npx @ruvector/agentic-synth-examples dspy train --models geminiLearn by doing with production-ready examples! 🚀
