@ruvector/gnn
v0.1.22
Published
Graph Neural Network capabilities for Ruvector - Node.js bindings
Maintainers
Readme
@ruvector/gnn - Graph Neural Network Node.js Bindings
High-performance Graph Neural Network (GNN) capabilities for Ruvector, powered by Rust and NAPI-RS.
Features
- GNN Layers: Multi-head attention, layer normalization, GRU cells
- Tensor Compression: Adaptive compression with 5 levels (None, Half, PQ8, PQ4, Binary)
- Differentiable Search: Soft attention-based search with temperature scaling
- Hierarchical Processing: Multi-layer GNN forward pass
- Zero-copy: Efficient data transfer between JavaScript and Rust
- TypeScript Support: Full type definitions included
Installation
npm install @ruvector/gnnQuick Start
Creating a GNN Layer
const { RuvectorLayer } = require('@ruvector/gnn');
// Create a GNN layer with:
// - Input dimension: 128
// - Hidden dimension: 256
// - Attention heads: 4
// - Dropout rate: 0.1
const layer = new RuvectorLayer(128, 256, 4, 0.1);
// Forward pass
const nodeEmbedding = new Array(128).fill(0).map(() => Math.random());
const neighborEmbeddings = [
new Array(128).fill(0).map(() => Math.random()),
new Array(128).fill(0).map(() => Math.random()),
];
const edgeWeights = [0.7, 0.3];
const output = layer.forward(nodeEmbedding, neighborEmbeddings, edgeWeights);
console.log('Output dimension:', output.length); // 256Tensor Compression
const { TensorCompress, getCompressionLevel } = require('@ruvector/gnn');
const compressor = new TensorCompress();
const embedding = new Array(128).fill(0).map(() => Math.random());
// Adaptive compression based on access frequency
const accessFreq = 0.5; // 50% access rate
console.log('Selected level:', getCompressionLevel(accessFreq)); // "half"
const compressed = compressor.compress(embedding, accessFreq);
const decompressed = compressor.decompress(compressed);
console.log('Original size:', embedding.length);
console.log('Compression ratio:', compressed.length / JSON.stringify(embedding).length);
// Explicit compression level
const level = {
level_type: 'pq8',
subvectors: 8,
centroids: 16
};
const compressedPQ = compressor.compressWithLevel(embedding, level);Differentiable Search
const { differentiableSearch } = require('@ruvector/gnn');
const query = [1.0, 0.0, 0.0];
const candidates = [
[1.0, 0.0, 0.0], // Perfect match
[0.9, 0.1, 0.0], // Close match
[0.0, 1.0, 0.0], // Orthogonal
];
const result = differentiableSearch(query, candidates, 2, 1.0);
console.log('Top-2 indices:', result.indices); // [0, 1]
console.log('Soft weights:', result.weights); // [0.x, 0.y]Hierarchical Forward Pass
const { hierarchicalForward, RuvectorLayer } = require('@ruvector/gnn');
const query = [1.0, 0.0];
// Layer embeddings (organized by HNSW layers)
const layerEmbeddings = [
[[1.0, 0.0], [0.0, 1.0]], // Layer 0 embeddings
];
// Create and serialize GNN layers
const layer1 = new RuvectorLayer(2, 2, 1, 0.0);
const layers = [layer1.toJson()];
// Hierarchical processing
const result = hierarchicalForward(query, layerEmbeddings, layers);
console.log('Final embedding:', result);API Reference
RuvectorLayer
Constructor
new RuvectorLayer(
inputDim: number,
hiddenDim: number,
heads: number,
dropout: number
): RuvectorLayerMethods
forward(nodeEmbedding: number[], neighborEmbeddings: number[][], edgeWeights: number[]): number[]toJson(): string- Serialize layer to JSONfromJson(json: string): RuvectorLayer- Deserialize layer from JSON
TensorCompress
Constructor
new TensorCompress(): TensorCompressMethods
compress(embedding: number[], accessFreq: number): string- Adaptive compressioncompressWithLevel(embedding: number[], level: CompressionLevelConfig): string- Explicit leveldecompress(compressedJson: string): number[]- Decompress tensor
CompressionLevelConfig
interface CompressionLevelConfig {
level_type: 'none' | 'half' | 'pq8' | 'pq4' | 'binary';
scale?: number; // For 'half'
subvectors?: number; // For 'pq8', 'pq4'
centroids?: number; // For 'pq8'
outlier_threshold?: number; // For 'pq4'
threshold?: number; // For 'binary'
}Search Functions
differentiableSearch
function differentiableSearch(
query: number[],
candidateEmbeddings: number[][],
k: number,
temperature: number
): { indices: number[], weights: number[] }hierarchicalForward
function hierarchicalForward(
query: number[],
layerEmbeddings: number[][][],
gnnLayersJson: string[]
): number[]Utility Functions
getCompressionLevel
function getCompressionLevel(accessFreq: number): stringReturns the compression level that would be selected for the given access frequency:
accessFreq > 0.8: "none" (hot data)accessFreq > 0.4: "half" (warm data)accessFreq > 0.1: "pq8" (cool data)accessFreq > 0.01: "pq4" (cold data)accessFreq <= 0.01: "binary" (archive)
Compression Levels
None
Full precision, no compression. Best for frequently accessed data.
Half Precision
~50% space savings with minimal quality loss. Good for warm data.
PQ8 (8-bit Product Quantization)
~8x compression using 8-bit codes. Suitable for cool data.
PQ4 (4-bit Product Quantization)
~16x compression with outlier handling. For cold data.
Binary
~32x compression, values become +1/-1. For archival data.
Performance
- Zero-copy operations where possible
- SIMD optimizations for vector operations
- Parallel processing with Rayon
- Native performance with Rust backend
Building from Source
# Install dependencies
npm install
# Build debug
npm run build:debug
# Build release
npm run build
# Run tests
npm testLicense
MIT - See LICENSE file for details
Contributing
Contributions are welcome! Please see the main Ruvector repository for guidelines.
