npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@ruvector/ruvllm

v0.2.3

Published

Self-learning LLM orchestration with TRM recursive reasoning, SONA adaptive learning, HNSW memory, FastGRNN routing, and SIMD inference

Downloads

1,577

Readme

RuvLLM

Rust License Tests CPU HuggingFace npm TRM

Self-Optimizing Neural Architecture (SONA) with TRM Recursive Reasoning, LFM2 Cortex, Ruvector Memory, and Intelligent Routing

"The intelligence is not in one model anymore. It is in the loop."


What is RuvLLM?

RuvLLM is a self-learning language model orchestration system that combines frozen foundation models with adaptive memory and intelligent routing. Unlike traditional LLMs that rely solely on static parameters, RuvLLM continuously improves from every interaction through three temporal learning loops.

Key Innovation: RuvLLM doesn't replace your LLM—it makes any LLM smarter over time by learning from experience, routing intelligently, and preventing catastrophic forgetting.

┌─────────────────────────────────────────────────────────────────────────┐
│                         RuvLLM Architecture                              │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│    Query ──► Embedding ──► Memory Search ──► Router Decision            │
│                               │                    │                     │
│                               ▼                    ▼                     │
│                         Graph Attention      Model Selection             │
│                               │                    │                     │
│                               └────────┬───────────┘                     │
│                                        ▼                                 │
│                              ┌─────────────────────┐                     │
│                              │   LLM Inference    │                     │
│                              │  (Any LLM Backend)  │                     │
│                              └─────────────────────┘                     │
│                                        │                                 │
│                                        ▼                                 │
│                    ┌───────────────────────────────────┐                │
│                    │  SONA Learning (3 Temporal Loops) │                │
│                    │  • Instant: Per-request MicroLoRA │                │
│                    │  • Background: Hourly patterns    │                │
│                    │  • Deep: Weekly EWC++ updates     │                │
│                    └───────────────────────────────────┘                │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘

Features

Core Components

| Component | Description | Implementation | |-----------|-------------|----------------| | LFM2 Cortex | Frozen reasoning engine (135M-2.6B params) | Mock, Candle, or external (llama.cpp/vLLM) | | Ruvector Memory | Adaptive synaptic mesh with HNSW indexing | Full CPU implementation with graph expansion | | FastGRNN Router | Intelligent model selection circuit | Sparse + low-rank matrices with EWC learning | | Graph Attention | Multi-head attention with edge features | 8-head attention, layer normalization | | SONA Engine | Self-optimizing neural architecture | LoRA + EWC++ + ReasoningBank | | TRM Engine | Tiny Recursive Models (7M params) | Recursive latent refinement with SONA bridge |

TRM (Tiny Recursive Models)

RuvLLM v0.2.3 introduces TRM - Samsung SAIL Montreal's parameter-efficient recursive reasoning approach. TRM achieves strong reasoning performance with only 7M parameters through iterative latent refinement.

┌─────────────────────────────────────────────────────────────────────────┐
│                         TRM Architecture                                 │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│    Question ──┬► Latent Update (n times) ──► Answer Refine ──┐          │
│               │                                               │          │
│               └───────────────────────────────────────────────┘          │
│                            (repeat K times)                              │
│                                                                          │
│    Components:                                                           │
│    • MLP Latent Updater - Fast feed-forward updates                     │
│    • Attention Latent Updater - Multi-head attention refinement         │
│    • Confidence Scorer - Early stopping based on convergence            │
│    • Answer Refiner - Residual-based answer improvement                 │
│    • SONA Bridge - Integration with learning loops                      │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘

Key Features:

  • 7M parameters - Achieves 83% on GSM8K with minimal compute
  • Recursive refinement - Iteratively improves answers through K iterations
  • Adaptive K - SONA routing determines optimal iteration count
  • Early stopping - Confidence-based termination for efficiency
  • NaN-safe - Robust numerical guards prevent gradient explosions
  • Buffer reuse - Optimized memory allocation for production use

SONA: Self-Optimizing Neural Architecture

RuvLLM introduces SONA, a three-tier temporal learning system:

┌──────────────────────────────────────────────────────────────────────────┐
│  Loop A: Instant (Per-Request)                           Latency: <100μs │
│  ──────────────────────────────────────                                  │
│  • Records query trajectories with activation patterns                   │
│  • MicroLoRA adaptation (rank 1-2) for immediate improvement             │
│  • SIMD-optimized: 2,236 ops/sec throughput                              │
├──────────────────────────────────────────────────────────────────────────┤
│  Loop B: Background (Hourly)                                             │
│  ─────────────────────────────                                           │
│  • K-means++ clustering extracts patterns (100 clusters = 1.3ms search)  │
│  • Base LoRA updates (rank 4-16) from successful patterns                │
│  • ReasoningBank stores learned strategies                               │
├──────────────────────────────────────────────────────────────────────────┤
│  Loop C: Deep (Weekly)                                                   │
│  ─────────────────────                                                   │
│  • Dream consolidation across all memory                                 │
│  • EWC++ prevents catastrophic forgetting (λ=2000 optimal)               │
│  • Concept hierarchies created, old nodes archived                       │
└──────────────────────────────────────────────────────────────────────────┘

Advanced Features

| Feature | Description | |---------|-------------| | SIMD Inference | Native AVX2/AVX512/SSE4.1 operations for CPU optimization | | Q4 Quantization | 4-bit weight quantization for memory efficiency | | MicroLoRA | Per-request adaptation with rank 1-2 (benchmark: rank-2 is 5% faster) | | EWC++ | Enhanced elastic weight consolidation with online Fisher estimation | | ReasoningBank | Pattern storage with K-means++ clustering | | HuggingFace Export | Export LoRA weights, patterns, and preference pairs | | Real Inference | Candle-based inference with HuggingFace model support | | Multi-Model Routing | Automatic selection between SmolLM, Qwen2, TinyLlama | | Federated Learning | Distributed learning across ephemeral agents with central coordinator | | WASM Support | Run SONA in browsers and edge devices | | Training Pipelines | Templated training for code, chat, reasoning, and custom agents | | Agent Factory | Create and manage multiple specialized learning agents | | TRM Reasoning | Recursive reasoning with only 7M parameters (83% GSM8K) | | Adaptive K Routing | SONA-driven iteration count for optimal compute | | NaN Guards | Robust numerical stability for production deployment |

Federated Learning Architecture

RuvLLM supports federated learning where ephemeral agents collect trajectories and export to a central coordinator:

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│  Agent A    │     │  Agent B    │     │  Agent C    │
│ (ephemeral) │     │ (ephemeral) │     │ (ephemeral) │
└──────┬──────┘     └──────┬──────┘     └──────┬──────┘
       │                   │                   │
       │    export()       │    export()       │    export()
       ▼                   ▼                   ▼
  ┌────────────────────────────────────────────────┐
  │            Federated Coordinator               │
  │         (persistent, large capacity)           │
  │  • Aggregates trajectories from all agents     │
  │  • Quality-filtered acceptance (threshold)     │
  │  • Auto-consolidation every N agents           │
  │  • Shares patterns with new agents             │
  └────────────────────────────────────────────────┘

Key Components:

  • EphemeralAgent: Short-lived agents that process tasks and export learned state
  • FederatedCoordinator: Central aggregator with 50K trajectory capacity
  • AgentExport: Serializable state containing trajectories, stats, and patterns
  • Quality Filtering: Only high-quality trajectories (>0.4 score) are aggregated

Performance Benchmarks

Orchestration Latency (CPU-Only)

| Metric | Value | Notes | |--------|-------|-------| | Initialization | 3.71ms | Full system startup | | Average Query | 0.09ms | Single query latency | | Session Query | 0.04ms | With context reuse | | Throughput | ~38,000 q/s | 8 concurrent queries | | Memory Footprint | ~50MB | Base system |

Latency Breakdown

Embedding:    ~0.02ms  ████░░░░░░  (20%)
Retrieval:    ~0.01ms  ██░░░░░░░░  (10%)
Routing:      ~0.01ms  ██░░░░░░░░  (10%)
Attention:    ~0.02ms  ████░░░░░░  (20%)
Generation:   ~0.04ms  ████████░░  (40%)

SONA Learning Performance

| Component | Metric | Value | |-----------|--------|-------| | MicroLoRA | Throughput | 2,236 ops/sec | | MicroLoRA | Batch-32 Latency | 0.447ms | | ReasoningBank | Pattern Search | 1.3ms (100 clusters) | | EWC++ | Fisher Update | <1ms |

Comparison with Traditional Systems

| System | P50 (ms) | P95 (ms) | vs GPT-4o | |--------|----------|----------|-----------| | GPT-4o (API) | 450.00 | 585.00 | 1.0x (baseline) | | Claude 3.5 Sonnet | 380.00 | 456.00 | 1.2x | | Gemini 2.0 Flash | 180.00 | 234.00 | 2.5x | | Llama 3.3 70B (vLLM) | 120.00 | 168.00 | 3.8x | | RuvLLM Orchestration | 0.06 | 0.08 | ~7,500x |

Note: RuvLLM orchestration latency measures memory retrieval, routing, and context preparation—NOT LLM generation. Actual response quality depends on your LLM backend.


Feature Comparison

| Feature | GPT-4o | Claude | RAG | vLLM | RuvLLM | |---------|--------|--------|-----|------|--------| | On-device Inference | ✗ | ✗ | ✗ | ✓ | ✓ | | Continuous Learning | ✗ | ✗ | ✗ | ✗ | ✓ | | Graph-based Memory | ✗ | ✗ | △ | ✗ | ✓ | | Adaptive Model Routing | ✗ | ✗ | ✗ | ✗ | ✓ | | EWC Anti-Forgetting | ✗ | ✗ | ✗ | ✗ | ✓ | | LoRA Adaptation | ✗ | ✗ | ✗ | ✗ | ✓ | | Pattern Extraction | ✗ | ✗ | ✗ | ✗ | ✓ | | HuggingFace Export | ✗ | ✗ | ✗ | ✗ | ✓ | | SIMD Optimization | ✗ | ✗ | ✗ | △ | ✓ | | Sub-ms Orchestration | ✗ | ✗ | ✗ | ✗ | ✓ | | Federated Learning | ✗ | ✗ | ✗ | ✗ | ✓ | | WASM/Browser Support | ✗ | ✗ | ✗ | ✗ | ✓ | | Training Pipelines | ✗ | ✗ | ✗ | ✗ | ✓ | | Works with ANY LLM | ✗ | ✗ | ✓ | ✗ | ✓ | | TRM Recursive Reasoning | ✗ | ✗ | ✗ | ✗ | ✓ | | 7M Param Efficiency | ✗ | ✗ | ✗ | ✗ | ✓ |

Legend: ✓ = Full Support, △ = Partial, ✗ = Not Supported


Quick Start

Prerequisites

  • Rust 1.77+
  • Cargo

Installation

# Clone the repository
git clone https://github.com/ruvnet/ruvector.git
cd ruvector/examples/ruvLLM

# Build in release mode
cargo build --release

Run the Demo

# Interactive demo with mock inference
cargo run --bin ruvllm-demo --release

# SIMD capabilities demo
cargo run --bin ruvllm-simd-demo --release

# Quick benchmark
cargo run --bin ruvllm-bench --release

# Full benchmark suite
cargo run --bin ruvllm-benchmark-suite --release

# HTTP server (requires 'server' feature)
cargo run --bin ruvllm-server --release --features server

# Pretraining pipeline
cargo run --bin ruvllm-pretrain --release

# HuggingFace export (requires 'hf-export' feature)
cargo run --bin ruvllm-export --release --features hf-export -- help

Library Usage

use ruvllm::{Config, RuvLLM, Result};

#[tokio::main]
async fn main() -> Result<()> {
    // Configure the system
    let config = Config::builder()
        .embedding_dim(768)
        .router_hidden_dim(128)
        .hnsw_params(32, 200, 64)  // M, ef_construction, ef_search
        .learning_enabled(true)
        .build()?;

    // Initialize
    let llm = RuvLLM::new(config).await?;

    // Create a session for multi-turn conversation
    let session = llm.new_session();

    // Query with session context
    let response = llm.query_session(&session, "What is machine learning?").await?;

    println!("Response: {}", response.text);
    println!("Model: {:?}", response.routing_info.model);
    println!("Confidence: {:.2}%", response.confidence * 100.0);

    // Provide feedback for learning
    llm.feedback(Feedback {
        request_id: response.request_id,
        rating: Some(5),
        correction: None,
        task_success: Some(true),
    }).await?;

    Ok(())
}

SIMD Inference Engine

use ruvllm::{SimdInferenceEngine, SimdGenerationConfig, SimdOps};

// Create SIMD-optimized engine
let engine = SimdInferenceEngine::new(256, 128, 4, 4)?;

// Configure generation
let config = SimdGenerationConfig {
    max_tokens: 50,
    temperature: 0.7,
    top_p: 0.9,
    ..Default::default()
};

// Generate with SIMD acceleration
let result = engine.generate("Once upon a time", &config)?;

SONA Learning Loops

use ruvllm::sona::{LoopCoordinator, SonaConfig, InstantLoop, BackgroundLoop};

// Initialize SONA coordinator
let config = SonaConfig {
    hidden_dim: 256,
    embedding_dim: 256,
    pattern_clusters: 100,
    ..Default::default()
};

let coordinator = LoopCoordinator::new(config);

// Instant learning (per-request)
coordinator.instant_loop().record_trajectory(query, response, quality);

// Background learning (hourly)
coordinator.background_loop().extract_patterns().await;

// Deep learning (weekly) - automatically handles EWC++
coordinator.deep_consolidation().await;

TRM Recursive Reasoning

use ruvllm::trm::{TrmEngine, TrmEngineBuilder, TrmConfig, RecursiveReasoner};

// Build TRM engine with custom configuration
let mut engine = TrmEngineBuilder::new()
    .hidden_dim(256)
    .embedding_dim(256)
    .default_k(10)           // Default K iterations
    .n_inner(4)              // Inner latent updates per K
    .confidence_threshold(0.95)  // Early stopping threshold
    .build()
    .unwrap();

// Prepare question and answer embeddings
let question = vec![0.5; 256];  // Question embedding
let mut answer = vec![0.1; 256]; // Initial answer (refined in-place)

// Perform recursive reasoning
let result = engine.reason(&question, &mut answer);

println!("Confidence: {:.2}%", result.confidence * 100.0);
println!("Iterations used: {}/{}", result.iterations_used, result.max_iterations);
println!("Early stopped: {}", result.early_stopped);

// With SONA routing for adaptive K
use ruvllm::trm::SonaBridge;

let bridge = SonaBridge::new(256, 256);
let routing = bridge.compute_routing(&question, 0.8);  // quality hint

let result = engine.reason_with_routing(&question, &mut answer, &routing);
println!("Adaptive K used: {}", routing.k);

Federated Learning

use ruvector_sona::training::{EphemeralAgent, FederatedCoordinator, SonaConfig};

// Create central coordinator (persistent, large capacity)
let mut coordinator = FederatedCoordinator::default_coordinator("main", 3072);
coordinator.set_quality_threshold(0.4);  // Only accept high-quality trajectories
coordinator.set_consolidation_interval(50);  // Auto-consolidate every 50 agents

// Create ephemeral agents for distributed learning
let mut agent = EphemeralAgent::default_federated("agent-1", 3072);

// Agent processes tasks and learns locally
agent.process_trajectory(
    embedding,      // Query embedding
    activations,    // Hidden state activations
    quality,        // Quality score [0.0, 1.0]
    Some("gpt-4".to_string()),  // Model route
    vec!["code".to_string()],   // Context tags
);

// Export state before agent termination
let export = agent.export_state();
println!("Agent exported {} trajectories", export.trajectories.len());

// Coordinator aggregates learning from all agents
let result = coordinator.aggregate(export);
println!("Accepted: {}, Rejected: {}",
    result.trajectories_accepted,
    result.trajectories_rejected
);

// Get patterns for warm-starting new agents
let patterns = coordinator.get_initial_patterns(10);

WASM Usage (Browser/Edge)

Build SONA for WebAssembly:

# Build WASM package
cd crates/sona
wasm-pack build --target web --features wasm

Use in JavaScript:

import init, { WasmSonaEngine } from './pkg/sona.js';

async function main() {
  await init();

  // Create SONA engine
  const engine = new WasmSonaEngine(256);  // hidden_dim = 256

  // Or with custom configuration
  const engineCustom = WasmSonaEngine.withConfig({
    hidden_dim: 256,
    embedding_dim: 256,
    micro_lora_rank: 2,
    base_lora_rank: 16,
    ewc_lambda: 1000.0,
    pattern_clusters: 128,
  });

  // Start trajectory
  const embedding = new Float32Array(256).fill(0.1);
  const trajectoryId = engine.startTrajectory(embedding);

  // Record steps
  engine.recordStep(trajectoryId, 42, 0.8, 1000);

  // End trajectory with quality score
  engine.endTrajectory(trajectoryId, 0.85);

  // Apply LoRA transformation
  const input = new Float32Array(256).fill(1.0);
  const output = engine.applyLora(input);

  // Run learning cycles
  engine.runInstantCycle();  // Flush micro-LoRA updates
  if (engine.tick()) {       // Background learning
    console.log('Background learning completed');
  }

  // Get statistics
  const stats = engine.stats();
  console.log('Patterns:', stats.patterns_stored);
}

HuggingFace Export

Export learned patterns, LoRA weights, and preference pairs to HuggingFace:

# Export LoRA weights in PEFT-compatible SafeTensors format
ruvllm-export safetensors ./exports/lora

# Export learned patterns as JSONL dataset
ruvllm-export patterns ./exports/patterns

# Export DPO/RLHF preference pairs
ruvllm-export preferences ./exports/preferences

# Export all artifacts
ruvllm-export all ./exports

# Push to HuggingFace Hub
HF_TOKEN=your_token ruvllm-export push username/my-sona-model

# Generate pretraining pipeline configuration
ruvllm-export pretrain ./exports

Architecture Deep Dive

HNSW Memory Index

The memory system uses Hierarchical Navigable Small World graphs:

Layer 2:  [3] ─────────────────── [7]
           │                       │
Layer 1:  [3] ─── [5] ─────────── [7] ─── [9]
           │      │                │       │
Layer 0:  [1]─[2]─[3]─[4]─[5]─[6]─[7]─[8]─[9]─[10]

• M = 32 connections per node
• ef_construction = 200 for build quality
• ef_search = 64 for query speed
• O(log N) search complexity

FastGRNN Router

Sparse + Low-rank matrices for efficient routing:

           Input (128-dim)
                │
        ┌───────┴───────┐
        │  LayerNorm    │
        └───────┬───────┘
                │
    ┌───────────┴───────────┐
    │   FastGRNN Cell       │
    │                       │
    │  W_sparse (90% zero)  │
    │  U = A @ B (rank-8)   │
    │                       │
    │  z = σ(Wx + Uh + b)   │
    │  h' = z⊙h + (1-z)⊙ν   │
    └───────────┬───────────┘
                │
        ┌───────┴───────┐
        │ Output Heads  │
        ├───────────────┤
        │ Model Select  │ → 4 classes
        │ Context Size  │ → 5 buckets
        │ Temperature   │ → continuous
        │ Top-p         │ → continuous
        │ Confidence    │ → continuous
        └───────────────┘

MicroLoRA Architecture

Two-tier LoRA system for adaptive learning:

┌─────────────────────────────────────────────────────────────┐
│                      MicroLoRA (Rank 1-2)                   │
│                   Per-Request Adaptation                    │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│   Input ──► Down Proj ──► Up Proj ──► Scale ──► Add        │
│   (dim)     (dim→rank)   (rank→dim)   (α/r)    to output   │
│                                                             │
│   Performance: <100μs latency, 2,236 ops/sec               │
│   Rank-2 is ~5% faster than Rank-1 (better SIMD)           │
└─────────────────────────────────────────────────────────────┘

┌─────────────────────────────────────────────────────────────┐
│                      BaseLoRA (Rank 4-16)                   │
│                   Background Adaptation                     │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│   Aggregated from successful MicroLoRA patterns             │
│   Merged hourly into base weights                           │
│   EWC++ regularization prevents forgetting                  │
│                                                             │
└─────────────────────────────────────────────────────────────┘

EWC++ (Enhanced Elastic Weight Consolidation)

Prevents catastrophic forgetting:

Loss = Task_Loss + λ * Σᵢ Fᵢ(θᵢ - θ*ᵢ)²

Where:
• Fᵢ = Online Fisher information (EMA decay 0.999)
• θ*ᵢ = Optimal weights for previous tasks
• λ = Adaptive (2000 default, range 100-15000)
• Multi-task memory with circular buffer (10 tasks)
• Automatic task boundary detection

SIMD Operations

Native CPU acceleration:

// AVX2 dot product (8 floats at a time)
#[target_feature(enable = "avx2")]
unsafe fn dot_product_avx2(a: &[f32], b: &[f32]) -> f32

// SSE4.1 fallback (4 floats at a time)
#[target_feature(enable = "sse4.1")]
unsafe fn dot_product_sse(a: &[f32], b: &[f32]) -> f32

// Automatic detection and dispatch
let result = SimdOps::dot_product(&a, &b);

Supported Models

Real Inference (CPU SIMD)

| Model | Parameters | Context | Repo | |-------|------------|---------|------| | SmolLM 135M | 135M | 2048 | HuggingFaceTB/SmolLM-135M | | SmolLM 360M | 360M | 2048 | HuggingFaceTB/SmolLM-360M | | Qwen2 0.5B | 500M | 4096 | Qwen/Qwen2-0.5B | | TinyLlama 1.1B | 1.1B | 2048 | TinyLlama/TinyLlama-1.1B-Chat |

All models support Q4_K_M quantization for efficient CPU inference.


HTTP Server API

When running with the server feature:

| Endpoint | Method | Description | |----------|--------|-------------| | /health | GET | Health check | | /query | POST | Submit query | | /stats | GET | Get statistics | | /feedback | POST | Submit feedback | | /session | POST | Create new session |

# Example query
curl -X POST http://localhost:3000/query \
  -H "Content-Type: application/json" \
  -d '{"query": "What is Rust?", "session_id": null}'

Testing

# Run all tests
cargo test -p ruvllm

# Unit tests only (47 tests)
cargo test -p ruvllm --lib

# Integration tests (15 tests)
cargo test -p ruvllm --test integration

# With output
cargo test -p ruvllm -- --nocapture

Test Coverage

| Module | Tests | Coverage | |--------|-------|----------| | Memory (HNSW) | 12 | Search, insertion, graph expansion | | Router (FastGRNN) | 8 | Forward pass, training, EWC | | Attention | 6 | Multi-head, edge features, cross-attention | | Embedding | 9 | Tokenization, caching, pooling | | SONA | 10 | LoRA, EWC++, ReasoningBank, loops | | Orchestrator | 2 | End-to-end pipeline | | Integration | 15 | Full system tests |


Project Structure

examples/ruvLLM/
├── Cargo.toml              # Dependencies and features
├── README.md               # This file
├── src/
│   ├── lib.rs              # Library entry point
│   ├── config.rs           # Configuration system
│   ├── error.rs            # Error types
│   ├── types.rs            # Core domain types
│   ├── orchestrator.rs     # Main RuvLLM coordinator
│   ├── memory.rs           # HNSW memory service
│   ├── router.rs           # FastGRNN router
│   ├── attention.rs        # Graph attention engine
│   ├── embedding.rs        # Embedding service
│   ├── inference.rs        # Mock inference pool
│   ├── inference_real.rs   # Candle-based real inference
│   ├── simd_inference.rs   # SIMD-optimized transformer
│   ├── learning.rs         # Self-learning service
│   ├── compression.rs      # Memory compression
│   ├── training.rs         # Pretraining pipeline
│   ├── trm/                # TRM (Tiny Recursive Models) module
│   │   ├── mod.rs          # Module exports and traits
│   │   ├── engine.rs       # Main TRM reasoning engine
│   │   ├── config.rs       # Configuration and builder
│   │   ├── mlp.rs          # MLP latent updater
│   │   ├── attention.rs    # Attention latent updater
│   │   ├── refiner.rs      # Answer refinement
│   │   ├── confidence.rs   # Confidence scoring
│   │   ├── sona_bridge.rs  # SONA integration
│   │   ├── types.rs        # TRM types and results
│   │   └── error.rs        # Error handling
│   ├── sona/               # SONA module
│   │   ├── mod.rs          # Module exports
│   │   ├── types.rs        # SONA types
│   │   ├── lora.rs         # MicroLoRA & BaseLoRA
│   │   ├── ewc.rs          # EWC++ implementation
│   │   ├── reasoning_bank.rs  # Pattern storage
│   │   ├── trajectory.rs   # Trajectory recording
│   │   ├── engine.rs       # SONA engine
│   │   └── loops/          # Temporal learning loops
│   │       ├── instant.rs  # Per-request loop
│   │       ├── background.rs  # Hourly loop
│   │       └── coordinator.rs # Loop coordinator
│   └── bin/
│       ├── demo.rs         # Interactive demo
│       ├── bench.rs        # Quick benchmarks
│       ├── benchmark_suite.rs  # Full benchmark suite
│       ├── simd_demo.rs    # SIMD capabilities demo
│       ├── pretrain.rs     # Pretraining pipeline
│       ├── export.rs       # HuggingFace export
│       └── server.rs       # HTTP server
├── tests/
│   └── integration.rs      # Integration tests
├── benches/
│   ├── pipeline.rs         # Full pipeline benchmarks
│   ├── router.rs           # Router benchmarks
│   ├── memory.rs           # Memory benchmarks
│   ├── attention.rs        # Attention benchmarks
│   ├── sona_bench.rs       # SONA benchmarks
│   └── trm_bench.rs        # TRM benchmarks
├── config/                 # Configuration files
└── docs/
    └── sparc/              # SPARC methodology docs

Feature Flags

RuvLLM Features

| Feature | Default | Description | |---------|---------|-------------| | storage | ✓ | Persistent storage and HNSW indexing | | metrics | ✓ | Prometheus metrics export | | server | ✗ | HTTP server with Axum | | real-inference | ✗ | Candle-based real LLM inference | | hf-export | ✗ | HuggingFace export via ruvector-sona | | full | ✗ | All features enabled |

# Build with all features
cargo build --release --features full

ruvector-sona Features (Dependency)

| Feature | Default | Description | |---------|---------|-------------| | serde-support | ✓ | Serialization for export, training, and federated learning | | wasm | ✗ | WebAssembly bindings for browser/edge deployment | | napi | ✗ | N-API bindings for Node.js integration |

# Build SONA with WASM support
cd crates/sona
wasm-pack build --target web --features wasm

Configuration Options

| Option | Default | Description | |--------|---------|-------------| | embedding.dimension | 768 | Embedding vector size | | embedding.max_tokens | 512 | Max tokens per input | | memory.hnsw_m | 16 | HNSW connections per node | | memory.hnsw_ef_construction | 100 | Build quality parameter | | memory.hnsw_ef_search | 64 | Search quality parameter | | router.input_dim | 128 | Router input features | | router.hidden_dim | 64 | FastGRNN hidden size | | router.sparsity | 0.9 | Weight matrix sparsity | | router.rank | 8 | Low-rank decomposition | | learning.enabled | true | Enable self-learning | | learning.quality_threshold | 0.7 | Min quality for writeback | | learning.ewc_lambda | 2000 | EWC regularization strength | | sona.pattern_clusters | 100 | K-means++ clusters | | sona.micro_lora_rank | 2 | MicroLoRA rank |

Federated Learning Configuration

| Option | Default | Description | |--------|---------|-------------| | federated.quality_threshold | 0.4 | Min quality for trajectory acceptance | | federated.consolidation_interval | 50 | Auto-consolidate every N agents | | federated.coordinator_capacity | 50000 | Trajectory buffer size for coordinator | | federated.agent_capacity | 500 | Trajectory buffer size per agent | | federated.base_lora_rank | 16 | Coordinator LoRA rank (deeper for aggregation) |


Self-Learning Improvement Over Time

| Epoch | Queries | Quality | Routing | Cache Hit | Memory | Improvement | |-------|---------|---------|---------|-----------|--------|-------------| | 0 | 0 | 65.0% | 50.0% | 0.0% | 0 | 0.0% (baseline) | | 1 | 50 | 67.2% | 58.0% | 10.0% | 25 | +3.4% | | 2 | 100 | 69.8% | 66.0% | 20.0% | 50 | +7.4% | | 3 | 150 | 71.5% | 74.0% | 30.0% | 75 | +10.0% | | 4 | 200 | 73.2% | 82.0% | 40.0% | 100 | +12.6% | | 5 | 250 | 74.8% | 90.0% | 50.0% | 125 | +15.1% |


References


License

Licensed under either of:

  • Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
  • MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)

at your option.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.